
GATE Release 3.5

VALUES API Member Front End Development Guide

Volume 1 - Call Interface

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
Page 2
© Eurex 2006
Deutsche Börse AG (DBAG), Eurex Frankfurt AG, Eurex Bonds GmbH (Eurex Bonds) and Eurex Repo GmbH (Eurex
Repo) are corporate entities and are registered under German law. Eurex Zürich AG is a public company and is
registered under Swiss law. The administrating and operating institutions of Eurex Deutschland and Eurex Zürich
(Eurex Exchanges) are Eurex Frankfurt AG (Eurex) and Eurex Zürich AG (Eurex), respectively. All intellectual
property, proprietary and other rights and interests in this publication and the subject matter hereof (other than
certain trademarks and service marks listed below) are owned by DBAG and its affiliates and subsidiaries
including, without limitation, all patent, registered design, copyright, trademark and service mark rights. While
reasonable care has been taken in the preparation of this publication to provide details that are accurate and not
misleading at the time of publication DBAG, Eurex, the Eurex Exchanges and their respective servants and agents
(a) do not make any representations or warranties regarding the information contained herein, whether express or
implied, including without limitation any implied warranty of merchantability or fitness for a particular purpose or
any warranty with respect to the accuracy, correctness, quality, completeness or timeliness of such information,
and (b) shall not be responsible or liable for any third party's use of any information contained herein under any
circumstances, including, without limitation, in connection with actual trading or otherwise or for any errors or
omissions occurring in this publication.
This publication is published for information only and shall not constitute investment advice. This brochure is not
intended for solicitation purposes but only for use as general information. All descriptions, examples and calcula-
tions contained in this publication are for illustrative purposes only.
Eurex offers services directly to members of the Eurex Exchanges. Those who desire to trade any products
available on the Eurex Exchanges or who desire to offer and sell any such products to others should consider
legal and regulatory requirements of those jurisdictions relevant to them, as well as the risks associated with such
products, before doing so.
Eurex derivatives (other than the DAX® Futures contract, Dow Jones STOXX 50 Futures contract, Dow Jones
EURO STOXX 50 Futures contract, Dow Jones STOXX 600 Banking Sector Futures contract, Dow Jones EURO
STOXX Banking Sector Futures contract, Dow Jones Global Titans 50 Futures contract and Eurex interest rate
derivatives) are currently not available for offer, sale or trading in the United States or by United States persons.

Trademarks and Service Marks
Buxl®, DAX®, Eurex®, Eurex Bonds®, Eurex Repo®, Eurex US®, iNAV®, MDAX®, SDAX®, StatistiX®,
TecDAX®, Xetra® and XTF Exchange Traded Funds® are registered trademarks of Deutsche Börse AG.
SMI® is a registered trademark of SWX Swiss Exchange. STOXXSM and Dow Jones EURO STOXX/STOXXSM 600
Sector Indexes as well as the Dow Jones EURO STOXXSM 50 Index and the Dow Jones STOXXSM 50 Index are
service marks of STOXX Ltd. and/or Dow Jones & Company, Inc. Dow Jones and Dow Jones Global Titans 50SM
Index are service marks of Dow Jones & Company, Inc. The derivatives based on these indexes are not
sponsored, endorsed, sold or promoted by STOXX Ltd. or Dow Jones & Company, Inc., and neither party makes
any representation regarding the advisability of trading or of investing in such products.
The names of other companies and third party products may be the trademarks or service marks of their
respective owners.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
Page 3
Table of Contents

1 Introduction 6
1.1 VALUES API 6

2 VALUES API Call Interface Concepts 8
2.1 Overview 8
2.2 Session Management Services 11
2.2.1 Overview 12
2.2.2 Initiating a VALUES Session 12
2.2.3 Terminating a VALUES Session Normally 15
2.2.4 Terminating a VALUES Session Abnormally 16
2.3 Security Management Services 16
2.3.1 Overview 16
2.3.2 Logging Into an Exchange Application 17
2.3.3 Receiving a Login Response 19
2.3.4 Logging Out from an Exchange Application Normally 20
2.3.5 Receiving a Logout Response 22
2.3.6 Logging Out from an Exchange Application Abnormally 23
2.4 Request Management Services 24
2.4.1 Overview 24
2.4.2 Submitting an Application Request 24
2.4.3 Receiving an Application Response 26
2.5 Subscription Management Services 28
2.5.1 Overview 28
2.5.2 Broadcast Extension 29
2.5.3 Identifying Available Data Streams 30
2.5.4 Subscribing to a Data Stream 30
2.5.5 Receiving Subscription Responses 33
2.5.6 Receiving Subscription Data 35
2.5.7 Unsubscribing from a Data Stream Normally 36
2.5.8 Receiving Unsubscription Responses 38
2.5.9 Unsubscribing from a Data Stream Abnormally 39
2.6 Integrating VALUES Events 40
2.7 Recovery Management Services 42
2.8 Multi-User Capability 43
2.9 Xervices, Xervice Classes and Multi-Exchange Capability 44
2.10 VALUES API Backwards Compatibility Concepts 44

3 VALUES API Call Interface Reference 46
3.1 Overview 46
3.2 State Diagrams 48
3.2.1 Overview 48
3.2.2 Normal Operation 48
3.2.3 Exception Handling 52

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
Page 4
3.3 VCI_Connect 56
3.3.1 Overview 56
3.3.2 VALUES Call Interface Version 59
3.3.3 The Connect Application Callback 59
3.4 VCI_Disconnect 60
3.5 VCI_Dispatch 61
3.6 VCI_Login 63
3.6.1 The Login Application Callback 65
3.7 VCI_Logout 66
3.8 VCI_Submit 68
3.8.1 The Submit Application Callback 70
3.9 VCI_Subscribe 70
3.9.1 The Subscription Application Callback 73
3.10 VCI_Unsubscribe 73
3.11 Application Callback Function Type 76

4 VALUES API Usage Examples 83
4.1 Overview 83
4.2 Initiating a VALUES Connection 83
4.3 Application Dispatch upon Event Notification 86
4.4 Receiving Connection Events 87
4.5 Logging on to Exchange Services 89
4.6 Receiving Login Responses 92
4.7 Submitting Application Requests 93
4.8 Receiving Application Responses 95
4.9 Subscribing to a Data Stream 96
4.10 Receiving Subscription Data 98
4.11 Unsubscribing from a Data Stream 100
4.12 Logging off from an Exchange Service 100
4.13 Terminating a VALUES Session 101
4.14 Auxiliary Functions of an End User Application 102

5 VALUES API Completion Codes (Call Interface) 103

6 VALUES API Call Interface Field Descriptions 105
6.1 Overview 105
6.1.1 Field Characteristics 105
6.1.2 Initialization Guideline 106
6.1.3 Template for the Call Interface Field Descriptions 106
6.2 Call Interface Field Descriptions 106
6.2.1 appDescr (ReqCntrlT) 106
6.2.2 applClass (XerviceInfoT) 107
6.2.3 applPrevVersion (CallBkAppDataT) 107
6.2.4 applVersion (LoginReqDataT, SubsReqDataT, CallBkAppDataT, XerviceInfoT) 107
6.2.5 appReq (SubmitReqDataT) 108
6.2.6 appReqBlockSize (CallBkAppDataT, SubmitReqDataT) 108

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
Page 5
6.2.7 appReqData (CallBkAppDataT) 109
6.2.8 appRespBlockSize (CallBkAppDataT) 109
6.2.9 appRespData (CallBkAppDataT) 109
6.2.10 authorizationData (LoginReqDataT, SubsReqDataT) 110
6.2.11 authorizationDataLength (LoginReqDataT, SubsReqDataT) 110
6.2.12 brcSubject (CallBkAppDataT) 111
6.2.13 closure (LoginReqDataT) 111
6.2.14 complCode (statusDataT) 111
6.2.15 complSeverity (statusDataT) 112
6.2.16 complText (statusDataT) 112
6.2.17 connectionID (ReqCntrlT, CnctRespDataT) 113
6.2.18 custBlockSize (AppCntxtDataT) 113
6.2.19 custData (AppCntxtDataT) 114
6.2.20 dbApplID (ReqCntrlT) 114
6.2.21 exchApplId (XerviceInfoT) 115
6.2.22 exchDscrName (XerviceInfoT) 115
6.2.23 funcResult (LoginRespDataT) 115
6.2.24 loginID (ReqCntrlT, LoginRespDataT) 116
6.2.25 password (CnctReqDataT) 116
6.2.26 prodMode (CnctRespDataT) 117
6.2.27 reqID (ReqCntrlT) 117
6.2.28 resubmitFlag (ReqCntrlT) 118
6.2.29 resubmitNo (ReqCntrlT) 118
6.2.30 streamType (CallbkAppDataT, SubsReqDataT) 119
6.2.31 subject (CallBkAppDataT) 119
6.2.32 subject (SubsRegDataT) 119
6.2.33 subjectLength (SubsReqDataT) 120
6.2.34 subsID (CallBkAppDataT, SubsRespDataT) 120
6.2.35 subsSubject (SubsRegDataT) 121
6.2.36 techComplCode (StatusDataT) 121
6.2.37 techComplSeverity (StatusDataT) 121
6.2.38 techComplText (StatusDataT) 122
6.2.39 userID (CnctReqDataT) 122
6.2.40 userID (LoginReqDataT) 123
6.2.41 userID (SubsReqDataT) 123
6.2.42 VCIver (ReqCntrlT) 123
6.2.43 VMQname (CnctRespDataT) 124

7 Data Definitions 125

8 Glossary 126

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
Introduction Page 6
1 Introduction

The VALUES API (Virtual Access Link Using Exchange Services Application Programming Interface) is
an interface which provides the functionality and flexibility needed to serve as a standard open
interface to Exchange services.
The VALUES API interface specification is the developer’s guide for designing and implementing appli-
cations which use the VALUES API standard open interface to Exchange services. The Member Front
End Development Guide is the final version of the VALUES API interface specification and describes
the structure of the interface, how to use the interface, and the associated development environment
requirements.

1.1 VALUES API

The VALUES API provides member systems with the single point of access to Exchange services. The
VALUES API can be utilized for both, human driven and computer driven trading activities. Figure 1.1
shows how the VALUES API fits into the overall Exchange infrastructure.

In Figure 1.1 and throughout the interface specification, Exchange applications refer to any Exchange
provided application which delivers trading services (e.g., submission of an order, inquiry for news
list), trading support, and clearing services to an end user application. End user applications refer to
any application which receives services via the VALUES API. Furthermore, a user for the interface
specification is defined as any member, trader, or participant who receives Exchange services via the
VALUES API.
The VALUES API is composed of a set of technical entry points known as the VALUES API Call
Interface and functional entry points known as VALUES API application requests:

Figure 1.1 - The VALUES API in the Context of Exchange Infrastructure

Exchange Applications

Member Integration Systems Server (MISS)

V A L U E S A P I

Exchange
Trading /

Application

Member
Assembled
Application

(MAA)

Host
Interface

ApplicationClearing

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
Introduction Page 7
VALUES API Call Interface
The VALUES API Call Interface is a set of C functions called by an application to access Exchange
services.

VALUES API Application Requests
The VALUES API application requests provide the functional layout and format related information
required to access Exchange services and are used in conjunction with the Call Interface entry
points as depicted in Figure 2.1.

The split of the VALUES API into technical and functional components minimizes the impacts of newly
released application requests to developers. Developers are encouraged to maintain a clear
separation of their technical framework that handles the VALUES Call Interface calls from the
functional aspects like message formatting etc.
The VALUES API can be expanded to support new functionality offered in each release of Exchange
applications. The expansion of the VALUES API is achieved by introducing new application requests
which correspond to the new functionality of a release. The goal is to keep the Call Interface stable
through successive releases of the VALUES API and the Exchange applications. In addition, the
VALUES API conceptually supports backwards compatibility for subsequent releases in the future.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 8
2 VALUES API Call Interface Concepts

In this section, the main concepts of the VALUES API Call Interface (VCI) are explained. After a brief
overview, Call Interface concepts are described in more detail in the following sections, grouped by
service categories.

2.1 Overview

The VALUES API Call Interface is a set of C functions used to communicate with Exchange applica-
tions. Through the VALUES API Call Interface, end user applications request Exchange services by
passing application requests and receiving application responses. Additionally, broadcast data is
received through the VALUES API Call Interface in response to subscription requests.

The Call Interface consists of a fixed number of entry points, as shown in Figure 2.1, which are used
to establish a session, login to a specific Exchange application, transmit application requests, request
broadcast data and receive responses. The following table summarizes the Call Interface entry points
and how they are grouped into service categories:

Figure 2.1 - The VALUES API Framework - Call Interface Entry Points

VALUES API

VCI_Login

VCI_Subscribe

VCI_Submit

VCI_Unsubscribe

VCI_Disconnect

Application Requests Call Interface Entry Points

VCI_Connect

VCI_Dispatch

VCI_Logout

Ex
ch

an
ge

 A
pp

lic
at

io
ns

End-User Applications

MODIFY_ORDER

INQUIRE_PRODUCT

INQUIRE_INSIDE_MARKET

SUBSCRIBE_MARKET_NEWS

ENTER_SINGLE_LEG_QUOTE

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 9
A hierarchical structure must be followed when using the VALUES API Call Interface. Figure 2.2 graph-
ically depicts the usage hierarchy.

Service
Category Entry Point Purpose

Session
Management

VCI_Connect Used to establish communication between the end user
application and GATE (Generic Access To Exchanges).

VCI_Disconnect Used to end access to GATE.

VCI_Dispatch Used to forward initial status and service specific infor-
mation of Exchange applications, state transitions and
exceptions to the application’s connect callback 1.

1. A callback is a concept used in event-driven programming (for example GUI programming) and is an event specific
function which is executed on occurrence of the corresponding event.

Security
Management

VCI_Login Used to gain access to specific Exchange applications.

VCI_Logout Used to end access to specific Exchange applications.

VCI_Dispatch Used to forward Login and Logout notification responses
and exceptions to the login application callback.

Subscription
Management

VCI_Subscribe Used to request access to broadcast data streams.

VCI_Unsubscribe Used to end access to broadcast data streams.

VCI_Dispatch Used to forward Subscribe and Unsubscribe responses,
subscription data and exceptions to the subscribe appli-
cation callback.

Request
Management

VCI_Submit Used to send application requests to Exchange applica-
tions.

VCI_Dispatch Used to forward Exchange application responses and
exceptions to the submit application callback.

Table 2.1 - VALUES API Entry Points

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 10
The level of right indentation depicts the level of hierarchy, and shows the related entry points at the
same level of indentation. Tasks/entry points indented right depend on the tasks/entry points to the
left. For example, use of VCI_Connect is a prerequisite to calling VCI_Login. Additionally, entry points
usage follows a top to bottom sequence. The order in which the individual entry point must be used
and the number of times they can be used is detailed in the following sections.
Note: The figure reflects the situation of a Xervice that implements Broadcast Extension. Xervices that
do not have these allow broadcast subscriptions based on a VALUES session alone, i.e. without a valid
login context. Please see section 2.5.2 for details.
The VALUES API Call Interface entry points and associated application callbacks are described in the
following sections.
For each service category, an explanation is given of the associated concept; e.g., what is a session
and what are the key data for session management. Additionally, the information flow for each Call
Interface entry point and application callback associated with each service category is explained.
The information flow for each service category is explained via a processing walkthrough. For the
purpose of explaining the concepts of the VALUES API, a user interacting with a GUI application is
assumed in the processing flow model. The processing walkthrough is shown graphically using the
following model.

Figure 2.2 - VALUES API Usage Hierarchy

Initiate VALUES Session (VCI_Connect)

Login to Exchange Service (VCI_Login)

Submit Application Request (VCI_Submit)

Receive Application Response (VCI_Dispatch)

Receive Exchange Service States (VCI_Dispatch)

Logout from Exchange Service (VCI_Logout)

Terminate VALUES Session (VCI_Disconnect)

Receive Login Response (VCI_Dispatch)

Receive Logout Response (VCI_Dispatch)

Subscribe Data Stream (VCI_Subscribe)

Unsubscribe Data Stream (VCI_Unsubscribe)

Receive Subscription Response and Data (VCI_Dispatch)

Receive Unsubscription Response (VCI_Dispatch)

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 11
Each processing walkthrough is presented independently of the end user application location on either
a workstation or a MISS; i.e., an end user application process may run on either a workstation or a
MISS. Under normal operation, running VALUES applications on a workstation is recommended. Each
processing step is assigned a number which links the sequence of processing with explanatory text in
a table. A processing step next to an arrow head depicts the direction for the specific step. A
processing step next to an arrow line describes both directions. This table containing the processing
steps with explanatory text also describes key input and output data.
Processing is described as synchronous (double-headed arrows) and asynchronous (single-headed
arrows) and is to be seen from an end user application perspective. End user application and
Exchange applications code/processing are shown in different shades of gray.

2.2 Session Management Services

In this section, an overview on what a session is and what sessions are used for is given. A detailed
explanation of the session startup and session shutdown is also provided. In the last section, the
mechanism for integrating VCI application requests and responses with end user applications is
shown.

Figure 2.3 - VALUES API Information and Processing Flow Model

E x c h a n g e A p p l i c a t i o n s

E n d U s e r
A p p l i c a t i o n

V A L U E S
A P I

1
U S E R

2

3

4

5

6

 E n d U s e r A p p l i c a t i o n

 E x c h a n g e s o f t w a r e

S y n c h r o n o u s P r o c e s s i n g

A s y n c h r o n o u s P r o c e s s i n g

7

8

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 12
2.2.1 Overview

A VALUES session is a control technique for managing communications between an end user appli-
cation and VALUES API. All communication between end user applications and Exchange applications
via GATE is built on top of a session.
To use Exchange services, an end user application must first start a VALUES session. When finished
interacting with VALUES API, an end user application must end the VALUES session. Multiple end user
applications or application instances may run in parallel, each with its own VALUES session. However,
only one VALUES session may be established per application process.
Note: The VALUES API is not thread safe. If a multi-threaded application issues a call to a VCI entry
point with any VCI call still running in another thread, the second call will fail. Reentrant use of VCI entry
points is also not allowed – from inside an application callback that is invoked by VALUES, no VCI calls
must be used. Offending invocations are rejected. A multi-threaded end user application is responsible
for synchronizing it’s threads accordingly.

Figure 2.4 above shows the execution of multiple end user applications process in parallel. Each appli-
cation process initiates its own VALUES session (1), interacts with Exchange applications (2) and then
terminates its session (3).

2.2.2 Initiating a VALUES Session

In this section the processing flow during the startup of a session is described. The VCI_Connect entry
point is explained in the context of a user starting an end user application. VCI_Connect is a prereq-
uisite for the use of any other VALUES API entry point. Figure 2.5 graphically depicts the processing
involved in initiating a VALUES session. The processing steps are described in Table 2.2.

Figure 2.4 - VALUES Session Concept

Exchange Applications

End User
Application

1

End User
Application

2

End User
Application

n

VALUES API

1 2 3 1 2 3 1 2 3

End User Application

Exchange software

 Synchronous Processing

 Asynchronous Processing

VALUES APIVALUES API

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 13
Figure 2.5 - Connecting to GATE

G A T E

E n d U s e r
A p p l i c a t i o n

V A L U E S
A P I

1

U S E R

2

3

4

5

6

E n d U s e r A p p l i c a t i o n

E x c h a n g e s o f t w a r e

S y n c h r o n o u s P r o c e s s i n g

A s y n c h r o n o u s P r o c e s s i n g

V C I _ C o n n e c t ()

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 14
The end user application has now established a session with GATE. At this point, one or several logins
or subscriptions to an Exchange application can be initiated or the session can be terminated.

Step Description Input Output

1 The user starts an end user application. The application initializes
itself.

n/a n/a

2 The application calls VCI_Connect to start a VALUES session. User
ID (UID), password (PW) and an application callback reference are
passed. The user ID and the password are authenticated using
operating system security functions. The application callback
reference (see section 2.6 for information on application callbacks)
is used to notify the application of information that identifies
available services (see section 2.9), initial status and state transi-
tions of Exchange applications and GATE after the session is estab-
lished.
The user ID and password enable authentication and authorization
of the session request.
The application process waits for VCI_Connect to complete.

UID,
PW,
callback
reference

n/a

3 VCI_Connect forwards the session startup request to GATE and
waits for the processing to be completed.

UID, PW n/a

4 GATE authenticates the connection request and allocates a
connection ID (CID).
GATE returns a completion code (status) and, if the request was
successful, a connection ID to VCI_Connect.

n/a status,
CID

5 VCI_Connect installs the application callback for later use. It then
returns the completion code (status), the production mode (Prod
Mode) and the name of the VALUES Message Queue (VMQ) to the
end user application. Details on the VMQ are provided in section
2.6.

n/a status,
Prod
Mode,
VMQ-
name

6 The end user application completes its initialization including estab-
lishing access to the VMQ and returns control to the user.
Note: The VMQ must be monitored for events immediately after
successful session establishment.

n/a n/a

Table 2.2 - VCI_Connect Process Flow

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 15
2.2.3 Terminating a VALUES Session Normally

In this section, the processing flow during the shutdown of a session is described. The
VCI_Disconnect entry point is explained in the context of a user requesting termination of an end user
application. The application must log out from Exchange applications and end all subscriptions before
performing a VCI_Disconnect. Figure 2.6 graphically depicts the processing involved in session termi-
nation. The processing steps are described in Table 2.3.

Figure 2.6 - Disconnecting from Technical Services GATE

Step Description Input Output

1 The user initiates application shutdown. The application logs out
from Exchange Applications and ends all subscriptions.

n/a n/a

2 The application calls VCI_Disconnect to process the shutdown
request.
The application waits for VCI_Disconnect to complete.

connection
ID

n/a

3 VCI_Disconnect forwards the session termination request to
GATE and waits for the processing to be completed.

CID n/a

Table 2.3 - VCI_Disconnect Process Flow

 G ATE

End U se r
App lication

VALU ES
AP I

1

U S ER

2

3

4

5

6

E n d U se r A pp lic a tion
E xc hange softw are

S yn ch ron ou s P rocess in g

A syn chronou s P roc ess in g

VC I_D isco nnec t()

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 16
The end user application has now ended its VALUES session. At this point, the application can call
VCI_Connect to re-establish a session with GATE.

2.2.4 Terminating a VALUES Session Abnormally

A range of exceptions can occur in case of failure of hardware or software components. If the appli-
cation is unable to disconnect normally, exception handling must take place.
Exception handling is supported by VALUES API through completion status and application callback
invocation. When an exception occurs, VALUES API responds with invocation of registered application
callbacks in a defined sequence. Please refer to section 3.2.3 for detailed information on exception
handling.

2.3 Security Management Services

In this section, an overview of VALUES API security management services is given. The Call Interface
entry points VCI_Login and VCI_Logout and their relationship to VCI_Connect are explained.

2.3.1 Overview

VALUES API secures two levels of application access; access to GATE and access to Exchange appli-
cations. Securing access to GATE and Exchange applications consists of authenticating the user and
authorizing user requests. The mechanisms and associated data used by VALUES API to secure
access are shown in Table 2.4.
Access to and use of the VALUES API Call Interface must be authenticated and authorized. Access
control has to be provided for a series of layered components:

Workstation or MISS operating system

End user applications

Exchange applications

The VALUES API interface specification focuses only on security required for Exchange applications
and end user applications which use VALUES API. Table 2.4 maps security mechanisms and responsi-

4 GATE confirms the existence of the session and the user's right
to terminate it. The session is terminated and a completion code
(status) is returned to VCI_Disconnect.

n/a status

5 VCI_Disconnect cancels the application callback associated with
the session after invoking it. The completion code (status) is
then returned to the application.

n/a status

6 The end user application can now inform the user of the
successful disconnection and complete the shutdown
processing.

n/a n/a

Step Description Input Output

Table 2.3 - VCI_Disconnect Process Flow

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 17
bilities to the different layers to be secured. User is defined in Table 2.4 as any member, trader, or
participant who receives Exchange services via the VALUES API.

As discussed in section 2.2, VCI_Connect is used to start a VALUES session. It is also the mechanism
used to secure access to GATE.
Access control to the Exchange applications is supported via the VCI_Login entry point. VCI_Login
must be used to obtain user authorization to each Exchange application. In the following sections, use
of the VCI_Login and VCI_Logout entry points is described.

2.3.2 Logging Into an Exchange Application

In this section, the processing flow of a login request is described. The VCI_Login entry point is
explained in the context of a user attempt to gain access to an Exchange application. The end user
application must have previously established a VALUES session via VCI_Connect. Several logins are
possible within one connection to VALUES API. Please refer to section 2.8 for detailed information on
multi-user capability.
The application has to pass a Xervice identifier (dbApplID) in order to specify the desired Exchange
Service (=Xervice) for logging in. Please refer to section 2.9 for information on how to obtain the
correct value for dbApplID, and for details on the Xervice concept.

Figure 2.7 graphically depicts the processing involved in logging into an Exchange application. The
processing steps are explained in Table 2.5.

Access Control Responsible Mechanism Data

Workstation and MISS User User defined User defined

GATE Exchange VCI_Connect VALUES User ID and Password
(MISS Operating System User ID/Password)

VALUES API-based
applications

User User defined User defined

Exchange applications Exchange VCI_Login Exchange applications User ID and authori-
zation data.

Table 2.4 - VALUES API Security Mechanisms

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 18
Figure 2.7 - Exchange Application Login

Step Description Input Output

1 The end user application requests user ID and authorization
data from the user.

n/a UID,
auth.

2 The application calls VCI_Login passing user ID, authorization
data (password), dbApplID (target Xervice identifier) and appli-
cation callback. The end user application waits for VCI_Login
to return control.

UID,
auth. data,
dbApplID, appli-
cation callback

n/a

3 VCI_Login forwards the login request to the Exchange appli-
cation for processing.
VCI_Login records the application callback for later use.

UID,
auth. data,

n/a

4 VCI_Login returns to the calling application with the status of
its transmission of the login request.

n/a status

5 The end user application returns control to the user. n/a status

Table 2.5 - VCI_Login Process Flow

E n d U s e r
A p p l i c a t i o n

E x c h a n g e A p p l i c a t i o n s

V A L U E S
A P I

1
U S E R

V C I _ L o g i n ()

2

3

4

5

E n d U s e r A p p l i c a t i o n

E x c h a n g e s o f t w a r e

S y n c h r o n o u s P r o c e s s i n g

A s y n c h r o n o u s P r o c e s s i n g

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 19
The login request has been transmitted to the Exchange application and an application callback has
been scheduled. The exact processing status of the login request is unknown until a response is
received.

2.3.3 Receiving a Login Response

In this section, the processing flow during receipt of a login response is described. The VCI_Dispatch
entry point and application callback are explained in the context established by a login request (see
section 2.3.2). Figure 2.8 graphically depicts the processing involved in receiving a login response.
The processing steps are described in Table 2.6

Figure 2.8 - Login Response Processing

End U ser
App lica tion

Exchange App lica tions

VALU ES AP I

5

U SER

V C I_D ispa tch ()

2

3

6

8

End U se r A pp lica tion

Exchange so ftw a re

App lica tion
D ispa tch Loop

1

7

VALU ES
M essage
Q ueue

4

U ser In te rfa ce
Even t Q ueue

App lica tion
Ca llback

 Synch ronous P rocess ing

A synch ronous P rocess in g

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 20
The end user application is now able to provide Exchange application functionality; e.g., order entry.

2.3.4 Logging Out from an Exchange Application Normally

In this section, the processing flow of a logout request is described. The VCI_Logout entry point is
described in the context of a user terminating the end user application. It is assumed that during the
session the user logged on to an Exchange application. The end user application can retain authorized
communication to Exchange application throughout a session and perform all necessary logouts at
session shutdown. Alternatively, the logout service can be used at any time during a session.
Figure 2.9 graphically depicts the processing involved in logging out from an Exchange application.
The processing steps are explained in Table 2.7.

Step Description Input Output

1 A login response is sent to the VALUES message queue (VMQ)
from an Exchange application.

response
data

n/a

2 The application dispatch loop receives notification of an event
having occurred on the VMQ.

VMQ event n/a

3 The end user application calls VCI_Dispatch and waits for the
call to complete.

n/a n/a

4 VCI_Dispatch reads the response message from the VMQ. response
data

n/a

5 VCI_Dispatch identifies the application callback associated
with the response message.
VCI_Dispatch calls the application callback (i.e., the callback
registered with the login request) passing a login ID and waits
for the application callback to return.

status,
login ID

status,
login ID

6 The application callback recognizes that the message contains
a login response by reading the status passed and displays the
login status to the user. The application callback then stores
the login ID for further reference.

status,
login ID

status

7 The application callback returns to VCI_Dispatch. n/a n/a

8 VCI_Dispatch deletes its knowledge of the login request
context. VCI_Dispatch returns control to the application
dispatch loop along with the status of its processing.

n/a status

Table 2.6 - VCI_Dispatch Process Flow (Receipt of Login Response)

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 21
Figure 2.9 - Exchange Application Logout

Step Description Input Output

1 The user requests a logout from the Exchange application. n/a n/a

2 The application calls VCI_Logout passing the dbApplID
(Exchange application) and the login ID. The application waits
for VCI_Logout to complete.

dbApplID,
login ID

n/a

3 VCI_Logout forwards the logout request to the Exchange appli-
cation.

user ID n/a

4 VCI_Logout returns to the calling application with the status of
its transmission of the logout request.

n/a status

5 The application returns control to the user. n/a n/a

Table 2.7 - VCI_Logout Process Flow

E n d U s e r
A p p l i c a t i o n

E x c h a n g e A p p l i c a t i o n s

V A L U E S
A P I

1
U S E R

V C I _ L o g o u t ()

2

3

4

5

 E n d U s e r A p p l i c a t i o n

 E x c h a n g e s o f t w a r e

S y n c h r o n o u s P r o c e s s i n g

A s y n c h r o n o u s P r o c e s s i n g

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 22
The logout request has been transmitted to the Exchange application. The exact processing status of
the logout request is unknown until a response is received.

2.3.5 Receiving a Logout Response

In this section the processing flow during receipt of a logout response is described. The VCI_Dispatch
entry point and application callback are explained in the context established by a logout request (see
also section 2.3.4). Figure 2.10 graphically depicts the processing involved in receiving a logout
response. The processing steps are described in Table 2.8.

Figure 2.10 - Logout Response Processing

End U ser
App lica tion

Exchange App lica tions

VALU ES AP I

5

U SER

VC I_D ispa tch ()

2

3

6

8

End U se r A pp lica tion

Exchange so ftw a re

App lica tion
D ispa tch Loop

1

7

VALU ES
M essage
Q ueue

4

U ser In te rface
Even t Q ueue

App lica tion
Ca llback

 Synch ronous P rocess ing

A synch ronous P rocess ing

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 23
The end user application has now successfully logged out from the Exchange application.

2.3.6 Logging Out from an Exchange Application Abnormally

A range of exceptions can occur when using GATE; i.e., failure of hardware and/or software compo-
nents. If the application is unable to logout normally, exception handling must take place.
Exception handling is supported by VALUES API through completion status and application callback
invocation. When an exception occurs, VALUES API responds with invocation of registered application
callbacks in a defined sequence. Please refer to section 3.2.3 for detailed information on exception
handling.

Step Description Input Output

1 A logout response is sent to the VALUES message queue
(VMQ) from the Exchange application.

response
data

n/a

2 The application dispatch loop receives notification of an event
having occurred on the VMQ.

VMQ event n/a

3 The end user application calls VCI_Dispatch and waits for the
call to complete.

n/a n/a

4 VCI_Dispatch reads the response message from the VMQ. response
data

n/a

5 VCI_Dispatch identifies the application callback associated
with the response message.
VCI_Dispatch calls the application callback (i.e., for receipt of
logout responses, the callback registered with the corre-
sponding login request is used) passing a login ID and waits
for the application callback to return.

status,
login ID

status,
login ID

6 The application callback recognizes that the message contains
a logout response by reading the status passed and displays
the logout status to the user. If applicable, it cleans up data
related to the Exchange Application just logged off from.

status status

7 The application callback returns to VCI_Dispatch. n/a n/a

8 VCI_Dispatch deletes its knowledge of the logout request
message, response message and application callback.
VCI_Dispatch returns control to the application dispatch loop
along with the status of its processing.

n/a status

Table 2.8 - VCI_Dispatch Process Flow (Receipt of Logout Response)

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 24
2.4 Request Management Services

In this section, an overview of what requests are and how they are processed by the VALUES API is
given. The entry point VCI_Submit and how it is used to send requests to Exchange applications is
explained.

2.4.1 Overview

Request management services provide access to Exchange applications. A request consists of a
single application request and a single application response.
An application request is used to trigger processing by an Exchange application. It consists of a
request ID, which is unique per supported Exchange application, and any data needed to satisfy the
request (e.g., order details for entering an order). For detailed information on specific application
requests, please refer to the Exchange application specific volumes.
An application response contains the results of the Exchange application’s processing. It is generated
by the requested Exchange application and is delivered asynchronously to the end user application. An
application response consists of the corresponding request ID, processing completion status, and any
additional data needed to communicate processing results. Application responses will be received as
a single response to a specific request.

2.4.2 Submitting an Application Request

In this section, the processing flow during submission of an application request is described. The
VCI_Submit entry point is explained in the context of a user submitting an order. It is assumed that the
user previously obtained authorization (for details on security and login see section 2.3).
Figure 2.11 graphically depicts the processing involved in submitting an application request. The
processing steps are described in Table 2.9, using the application request “Enter Single Leg Order” as
an example.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 25
Figure 2.11 - Application Request Processing

E n d U s e r
A p p l i c a t i o n

E x c h a n g e A p p l i c a t i o n s

V A L U E S
A P I

1
U S E R

V C I _ S u b m i t ()

2

3

4

5

 E n d U s e r A p p l i c a t i o n

 E x c h a n g e s o f t w a r e

 S y n c h r o n o u s P r o c e s s i n g

A s y n c h r o n o u s P r o c e s s i n g

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 26
The user's order has been transmitted to the Exchange application and an end user application
response callback has been scheduled. The exact processing status of the application request is
unknown until a response is received.

2.4.3 Receiving an Application Response

In this section, the processing flow during receipt of an application response is described. The
VCI_Dispatch entry point and application callback are explained in the context established by
submission of an order (see section 2.4.2). Figure 2.12 graphically depicts the processing involved in
receiving an application response. The processing steps are described in Table 2.10.

Step Description Input Output

1 User enters an order into his application. order data n/a

2 The end user application formats the “Enter Single Leg Order“
application request and calls VCI_Submit to send it to the
Exchange application.
The end user application includes an application callback
reference to be invoked on completion of the application
request.
The end user application waits for VCI_Submit to return
control.

order data,
callback
reference,
login ID,
dbApplID

n/a

3 VCI_Submit forwards the application request to the Exchange
application.
VCI_Submit records the application callback for later use.

order data,
dbApplID,
user Id

n/a

4 VCI_Submit returns to the calling application with the status of
its transmission of the application request.

n/a status

5 The application returns control to the user. n/a n/a

Table 2.9 - VCI_Submit Process Flow

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 27
Figure 2.12 - Application Response Processing

End U ser
App lica tion

E xchange App lica tions

VALU ES AP I

5

U SER

V C I_D ispa tch ()

2

3

6

8

End U se r A pp lica tion

Exchange so ftw a re

App lica tion
D ispa tch Loop

1

7

VALU ES
M essage
Q ueue

4

U ser In te rface
Even t Q ueue

App lica tion
Ca llb ack

 Synch ronous P rocess ing

A synch ronous P rocess ing

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 28
The application has received the asynchronous response and displayed it to the user.

2.5 Subscription Management Services

This section starts with an overview of the subscription mechanism, data streams and broadcasting.
The subsequent sections describe the Call Interface entry points to start a subscription, to receive
subscription data and to terminate a subscription.

2.5.1 Overview

Subscription is the mechanism used to request event-driven information from the Exchange applica-
tions. Subscription can be started and stopped. Information requested through a subscription arrives
asynchronously.
Note: As broadcast volumes can be very high, writing fast subscription callbacks is necessary. Please
refer to section 3.9.1 for details.
Subscriptions are supported on data streams (collections of selected data) which disseminate public
and private data from the Exchange applications. Each Exchange will make its public data streams
available to all exchange members in their market. Public market data such as “best prices” and
“trade volume” or “news” are broadcast through public data streams. Private data streams are
constructed individually for Exchange participants and contain information such as “own orders”.

Step Description Input Output

1 An application response is sent to the VALUES message queue
(VMQ) from an Exchange application.

response
data

n/a

2 The application dispatch loop receives notification of an event
having occurred on the VMQ.

VMQ event n/a

3 The end user application calls VCI_Dispatch and waits for the
call to complete.

n/a n/a

4 VCI_Dispatch reads the response message from the VMQ. response
data

n/a

5 VCI_Dispatch identifies the application callback associated
with the response message.
VCI_Dispatch calls the application callback passing the appli-
cation response and request data.
VCI_Dispatch waits for the application callback to return.

response
data,
request
data

n/a

6 The application callback displays the received data to the user. n/a n/a

7 The application callback returns to VCI_Dispatch. n/a n/a

8 VCI_Dispatch deletes its knowledge of the application request
message, response message and application callback.
VCI_Dispatch returns control to the application dispatch loop
along with the status of its processing.

n/a status

Table 2.10 - VCI_Dispatch Process Flow (Receipt of Application Response)

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 29
Subscription to a data stream is valid for a certain period of time during a VALUES session. Subscrip-
tions can be issued once or several times.
As soon as the user has subscribed to a data stream, broadcast data will be received continuously as
it is generated by Exchange applications.
The services provided by subscription management are summarized in Figure 2.13.

Subscription requests are sent to the Exchange applications specifying the desired data stream, the
corresponding subscription response is received asynchronously (1). Subsequently all new broadcast
data on the specified stream is sent to the end user application asynchronously (2) via the callback
specified with the subscription request. The end user application may stop the subscription at any
time by sending an unsubscription request which is then confirmed by an asynchronous unsubscription
response (3).

2.5.2 Broadcast Extension

Beginning with GATE Release 3.0, Exchange applications can implement the Broadcast Extension
features. Please consult the Xervice-specific Volumes of VALUES API documentation for information if
a given version of the Xervice implements Broadcast Extension.
In case Broadcast Extension is implemented, the following features are effective:

Figure 2.13 - Subscription Concept

E x c h a n g e

E n d U s e r
A p p l i c a t i o n

V A L U E S
A P I

2 3

 E n d U s e r
A l i i E x c h a n g e

f

1

A p p l i c a t i o n
C a l l b a c k

 S y n c h r o n o u s
P i
A s y n c h r o n o u s
P i

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 30
Broadcast Authorization: For any broadcast subscription, a valid login context has to be estab-
lished, much like in the Request Management concept. This feature is disabled for applications that
use backward compatibility to the Call Interface Version using CVN_011.

Broadcast Clustering: For selected high-volume broadcast streams, multiple messages of broad-
cast data may be clustered in a single VMQ message, thereby saving large quantities of I/O over-
head. This feature is effective no matter which CVN is used by end user applications. Thus, it
cannot be disabled by using GATE’s backward compatibility mechanism.

2.5.3 Identifying Available Data Streams

Subscription to a data stream is made by specifying the subscription subject (Exchange Service,
stream type, filter criteria) and a callback to receive subscription data when calling VCI_Subscribe. For
detailed information on subjects and available data streams, please refer to the Exchange application
specific volumes. The VALUES API Call Interface offers a generic recovery assistance service for
broadcasts. For this purpose, a special subscription subject is available that enables the transmission
of Gap Notifications within each stream it has been used on. For more details, please refer to section
3.9.

2.5.4 Subscribing to a Data Stream

In this section, the processing flow to subscribe to a data stream is described. The VCI_Subscribe
entry point is explained in the context of a user opening a window. It is assumed that the user previ-
ously obtained authorization in case of a Xervice that implements Broadcast Extension (see section
2.5.2; for details on security and login see section 2.3).
The application has to pass a Xervice identifier(dbApplID) in order to specify the desired Exchange
Service (=Xervice) when subscribing to a data stream. Please refer to section 2.9 for information on
how to obtain the correct value for dbApplID.
Figure 2.14 graphically depicts the processing involved in subscribing to a data stream. The
processing steps are explained in Table 2.11

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 31
.

Figure 2.14 - Data Stream Subscription

Step Description Input Output

1 A user opens a window to display market data (the application
fetches an initial data set to fill the window, using an Inquiry)

n/a n/a

2 The application calls the VCI_Subscribe entry point passing
the data stream subject and an application callback
reference. The end user application waits for VCI_Subscribe
to complete.

subject,
callback,
dbApplID

n/a

3 VCI_Subscribe forwards the subscription request to the local
architecture.
VCI_Subscribe stores the application callback for later use.

subject,
dbApplID

n/a

Table 2.11 - VCI_Subscribe Process Flow

E n d U s e r
A p p l i c a t i o n

E x c h a n g e A p p l i c a t i o n s

V A L U E S
A P I

1
U S E R

V C I _ S u b s c r i b e ()

2

3

4

5

 E n d U s e r A p p l i c a t i o n

 E x c h a n g e s o f t w a r e

 S y n c h r o n o u s P r o c e s s i n g

A s y n c h r o n o u s P r o c e s s i n g

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 32
The subscription request has been transmitted to the Exchange application. The exact processing
status of the subscription request is unknown until a subscription response is received.
The callback registered by VCI_Subscribe is used to handle

a (single) Subscription Response (section 2.5.5)

Subscription Data broadcasts (section 2.5.6).

4 VCI_Subscribe returns to the calling application with the
status of its transmission of the subscription request.

n/a status

5 The application returns control to the user. n/a n/a

Step Description Input Output

Table 2.11 - VCI_Subscribe Process Flow

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 33
2.5.5 Receiving Subscription Responses

In this section, the processing flow taking place when subscription responses arrive asynchronously is
explained. Subscription responses indicate the status of a previously issued subscription request. The
VCI_Dispatch entry point and application callback are described in the context established by a
subscription request. Figure 2.15 graphically depicts the processing involved in receiving subscription
responses. The processing steps are explained in Table 2.12.

Figure 2.15 - Subscription Response Processing

End U ser
App lica tion

E xchange App lica tions

VALU ES AP I

5

U SER

V C I_D ispa tch ()

2

3

6

8

End U se r A pp lica tion

Exchange so ftw a re

App lica tion
D ispa tch Loop

1

7

VALU ES
M essage
Q ueue

4

U ser In te rface
Even t Q ueue

App lica tion
Ca llb ack

 Synch ronous P rocess ing

A synch ronous P rocess ing

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 34
The end user application has subscribed to a data stream and will receive subscription data via the
same registered application callback.

Step Description Input Output

1 A subscription response is sent to the VALUES message
queue (VMQ) from the Exchange application.

response
data

n/a

2 The application dispatch loop receives notification of an event
having occurred on the VMQ.

VMQ event n/a

3 The end user application calls VCI_Dispatch and waits for the
call to complete.

n/a n/a

4 VCI_Dispatch reads the response message from the VMQ. response
data 1

1.Response data contains only the status of the subscription request, no broadcast data.

n/a

5 VCI_Dispatch identifies the application callback associated
with the subscription.
VCI_Dispatch calls the application callback passing the
subscription ID and status and waits for the callback to return.

status,
subsID

status,
subsID

6 The application callback recognizes that the message contains
a subscription response by reading the status passed and
displays the subscription status to the user. The application
callback then stores the subscription ID for further reference.

status,
subsID

status

7 The application callback returns to VCI_Dispatch. n/a n/a

8 VCI_Dispatch passes control back to the application dispatch
loop, returning the status of its processing.

n/a status

Table 2.12 - VCI_Dispatch Process Flow (Receipt of Subscription Response)

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 35
2.5.6 Receiving Subscription Data

In this section, the processing flow taking place when subscription data (i.e., broadcasts) arrives
asynchronously is explained. The VCI_Dispatch entry point and application callback are described in
the context established by a subscription. Figure 2.16 graphically depicts the processing involved in
receiving subscription data. The processing steps are explained in Table 2.13.

Figure 2.16 - Subscription Data Receipt

End User
Application

Exchange Applications

VALUES API

5

USER

VCI_Dispatch()

2

3

6

8

End User Application

Exchange software

Application
Dispatch Loop

1

7

VALUES
Message
Queue

4

User Interface
Event Queue

Application
Callback

 Synchronous Processing

Asynchronous Processing

0 . . . n

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 36
As long as the subscription is active, the callback will be invoked as new data arrives. The user may
unsubscribe at any time or subscribe to other data streams.

2.5.7 Unsubscribing from a Data Stream Normally

In this section, the processing flow to stop a subscription is explained. The VCI_Unsubscribe entry
point is explained in the context of a user closing a window which results in a request to stop the
subscription. Figure 2.17 graphically depicts the processing involved in unsubscribing. The
processing steps are described in Table 2.14.

Step Description Input Output

1 Subscription data is sent to the VALUES message queue (VMQ)
from the Exchange application.

subscription
data

n/a

2 The application dispatch loop receives notification of an event
having occurred on the VMQ.

VMQ event n/a

3 The end user application calls VCI_Dispatch and waits for the
call to complete.

n/a n/a

4 VCI_Dispatch reads the response message from the VMQ. subscription
data

n/a

5 VCI_Dispatch identifies the application callback associated
with the subscription.
VCI_Dispatch calls the application callback passing the
subscription data and waits for the callback to return. Multiple
callback invocations are possible. Under certain circum-
stances, it is possible that no callback invocation occurs at all,
which is equivalent with VALUES discarding a VMQ message
that is not required.

subscription
data

subscription
data

6 The application callback recognizes that the message contains
subscription data by reading the status passed.
The application callback displays the received data to the user,
populating or updating the window which initiated the
subscription.

n/a subscription
data

7 The application callback returns to VCI_Dispatch. n/a n/a

8 VCI_Dispatch passes control back to the application dispatch
loop, returning the status of its processing.

n/a status

Table 2.13 - VCI_Dispatch Process Flow (Receipt of Subscription Data)

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 37
Figure 2.17 - Data Stream Unsubscription

Step Description Input Output

1 The user closes the market overview window. n/a n/a

2 The application calls the VCI_Unsubscribe entry point passing
the subscription ID. The end user application waits for
VCI_Unsubscribe to complete.

subsID n/a

3 VCI_Unsubscribe forwards the unsubscription request to the
local architecture.

subsID n/a

4 VCI_Unsubscribe returns to the calling application with the
status of its transmission of the unsubscription request.

n/a status

5 The application returns control to the user. n/a n/a

Table 2.14 - VCI_Unsubscribe Process Flow

E n d U s e r
A p p l i c a t i o n

E x c h a n g e A p p l i c a t i o n s

V A L U E S
A P I

1
U S E R

V C I _ U n s u b s c r i b e ()

2

3

4

5

E n d U s e r A p p l i c a t i o n

E x c h a n g e s o f t w a r e

 S y n c h r o n o u s P r o c e s s i n g

A s y n c h r o n o u s P r o c e s s i n g

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 38
The unsubscription request has been transmitted to the Exchange application. The exact processing
status of the unsubscription request is unknown until a response is received.

2.5.8 Receiving Unsubscription Responses

This section explains the processing flow taking place when an unsubscription response arrives
asynchronously. Unsubscription responses indicate the status of a previously issued unsubscription
request. The VCI_Dispatch entry point and application callback are described in the context estab-
lished by an unsubscription request. Figure 2.18 graphically depicts the processing involved in
receiving an unsubscription response. The processing steps are explained in Table 2.15.

Figure 2.18 - Unsubscription Response Processing

End U ser
App lica tion

E xchange App lica tions

VALU ES AP I

5

U SER

V C I_D ispa tch ()

2

3

6

8

End U se r A pp lica tion

Exchange so ftw a re

App lica tion
D ispa tch Loop

1

7

VALU ES
M essage
Q ueue

4

U ser In te rface
Even t Q ueue

App lica tion
Ca llb ack

 Synch ronous P rocess ing

A synch ronous P rocess ing

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 39
The end user application has terminated subscription to a data stream.

2.5.9 Unsubscribing from a Data Stream Abnormally

A range of exceptions can occur when using GATE; i.e., failure of hardware and/or software compo-
nents. If the application is unable to unsubscribe normally, exception handling must take place.
Exception handling is supported by VALUES API through completion status and application callback
invocation. When an exception occurs, VALUES API responds with invocation of registered application
callbacks in a defined sequence. Please refer to section 3.2.3 for detailed information on exception
handling.

Step Description Input Output

1 An unsubscription response is sent to the VALUES message
queue (VMQ) from the Exchange application.

response
data

n/a

2 The application dispatch loop receives notification of an event
having occurred on the VMQ.

VMQ event n/a

3 The end user application calls VCI_Dispatch and waits for the
call to complete.

n/a n/a

4 VCI_Dispatch reads the response message from the VMQ. response
data

n/a

5 VCI_Dispatch identifies the application callback associated
with the corresponding subscription.
VCI_Dispatch calls the application callback passing the
subscription ID and status and waits for the callback to return.

status,
subsID

status,
subsID

6 The application callback recognizes that the message contains
an unsubscription response by reading the status passed and
displays the unsubscription status to the user. If applicable, it
cleans up data related to the broadcast stream it just unsub-
scribed from.

status status

7 The application callback returns to VCI_Dispatch. n/a n/a

8 VCI_Dispatch passes control back to the application dispatch
loop, returning the status of its processing.

n/a status

Table 2.15 - VCI_Dispatch Process Flow (Receipt of Unsubscription Responses)

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 40
2.6 Integrating VALUES Events

In this section, the mechanism for integrating VALUES events with the end user application is
described. Integration is based on the receipt of VALUES events by the end user application and the
forwarding of these events to VALUES API. The end user application is responsible for receiving
VALUES events from a queue created by VCI_Connect on VALUES startup. The queue is provided by
the operating system and based on the socket interface. The queue allows shared access for both
VALUES and the end user application. The name of the message queue (socket identifier, VMQname)
is returned by the VCI_Connect call to allow the end user application to access it. The application is
expected to monitor the queue for events and dispatch them to the API as they occur.
There are four kinds of VALUES events:

Response events are answers to end user application requests sent to Exchange applications via
the VCI_Submit, VCI_Login, VCI_Logout, VCI_Subscribe and VCI_Unsubscribe entry point.

Broadcast events are asynchronous data received after subscription to a data stream using the
VCI_Subscribe entry point.

Exception events are sent to VALUES in case of problems with the connection (e.g., network prob-
lems, GATE failure, etc.).

Notification events are sent to VALUES in case of Exchange application availability state changes
(e.g., initial Exchange application availability, when an Exchange application was restarted).

In order to avoid interruption of synchronous VALUES API calls (i.e. VCI_Connect, VCI_Disconnect)
VALUES API-based application should disable asynchronous events (e.g. UNIX signals).
End user applications based on the VALUES API are generally in control of the process; i.e., the main
processing loop is implemented in the end user application. The VALUES API is a library and does not
contain a processing loop. Monitoring of events (e.g., VALUES events, keyboard input, mouse input) is
therefore in responsibility of the end user application. The end user application dispatches (i.e., using
VCI_Dispatch) process control to the VALUES API temporarily to allow handling of VALUES events.
Application callbacks are functions with a specific function prototype and a custom implementation.
The function prototype of these callbacks are defined in the VALUES API specification, the end user
application implements the callbacks. The end user application can register callbacks with most of the
entry points by passing a callback reference. When the end user application receives a VALUES event
it dispatches processing to the VALUES API. The VALUES API reads the data associated with the event
from the VMQ, identifies the registered callback reference, formats the data associated with the event
and invokes the callback passing the data to the end user application.
Figure 2.19 graphically depicts the processing involved in delivery of asynchronous responses and
broadcast events as well as exceptions. The processing steps are described in Table 2.16.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 41
Figure 2.19 - VALUES Message Delivery to End User Application

G ATE / E xchange App lica tions

End U se r
App lica tion

VALU ES AP I

End U se r A pp lica tion

Exchange so ftw a re

VA LU ES
M essage
Q ueue

 B roadcasts

VC I_D ispa tch ()

4

3

6

5

1

2 App lica tion
D ispa tch Loop

App lica tion
Ca llback

U ser In te rface
Even t Q ueue

4

 N o tifica tion

 Synch ronous P rocess ing

A synch ronous P rocess in g

 R esponses

 Excep tions

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 42
2.7 Recovery Management Services

Some Exchange applications support recovery of application requests, application responses and
broadcasts. For a detailed description of these recovery management services please refer to the
Exchange application specific volumes.
For broadcasts, the VALUES API Call Interface offers a generic recovery assistance service. A special
subscription subject is available that enables the transmission of Gap Notifications within each stream
it has been used on. Please refer to section 3.9 for details on how to subscribe for Gap Notifications.

Step Description Input Output

1 Initiated by a VCI_Connect call, VALUES creates a queue (VMQ)
which can be written to by another process.
Exchange applications using GATE write VALUES events to the
VMQ.

VALUES
event

n/a

2 The end user application is responsible for checking the VMQ
for events (e.g., by listening to VMQ events with the applica-
tions own event dispatch loop).

notification
of pending
event

n/a

3 When an end user application recognizes that an event has
occurred on the VMQ, it calls VCI_Dispatch and waits for the
call to complete.

n/a n/a

4 VCI_Dispatch reads the message associated with the event
from the VMQ and identifies the appropriate application
callback to invoke. It is possible that multiple callback invoca-
tions take place, to the same or to various callback functions.
VCI_Dispatch:
Passes request and response data (in case of response)
Passes broadcast data (in case of broadcast)
Returns a notification (initial Exchange application state and in
case of an Exchange application state change)
Returns an exception (in case an exception occurred)
Invokes pending callbacks (in case of disconnect and logout,
Exchange application unavailability and non-transparent
failover)

VALUES
message

n/a

5 The application callback determines the type of message
received (i.e., responses, broadcasts, notofications or excep-
tions) by reading the status passed. The application callback
then displays the received information and returns to
VCI_Dispatch.

status received
information

6 VCI_Dispatch returns status to the application event dispatch
loop. The application resumes processing.

n/a status

Table 2.16 - VCI_Connect and VCI_Dispatch Process Flow (VALUES Message Delivery)

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 43
For recoverable broadcasts, usage of the Exchange application-specific recovery mechanisms should
be the preferred method.

2.8 Multi-User Capability

One instance of the VALUES API supports simultaneous access for multiple users of multiple
Exchange applications.

At login (by receiving the login response), the end user application receives a login ID from the VALUES
API. The login ID is unique for each successful call to VCI_Login and a specific Exchange application.
In subsequent calls to the entry points VCI_Logout, VCI_Subscribe (in case of Xervices with Broadcast
Extension, compare section 2.5.2) and VCI_Submit, the end user application must specify this login ID
to authenticate the specific user.
The callback registered with each call to VCI_Submit, VCI_Subscribe (Broadcast Extension only, see
section 2.5.2) or VCI_Login returns the login ID to the end user application. The end user application
can dispatch responses to the specific user based on the received login ID.
It is the responsibility of the application using the multi-user capability to ensure appropriate and autho-
rized use of login IDs obtained from the VALUES API.

Figure 2.20 - Multi-User Login

E n d U s e r
A p p l i c a t i o n

E x c h a n g e
A p p l i c a t i o n 1

V A L U E S
A P I

U S E R 1

V C I _ L o g i n ()

E n d U s e r A p p l i c a t i o n

E x c h a n g e S o f t w a r e

S y n c h r o n o u s P r o c e s s i n g

A s y n c h r o n o u s P r o c e s s i n g

U S E R 2 U S E R N

E x c h a n g e
A p p l i c a t i o n M

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 44
2.9 Xervices, Xervice Classes and Multi-Exchange Capability

A Xervice is a service offered to a VALUES-based Front End application by a certain electronic
exchange. A single exchange can offer multiple Xervices, e.g. Xetra Frankfurt offers a Xervice for
transactions, a Xervice for retransmission of (recoverable) broadcasts and a Xervice used for
continous auction quoting. To obtain access to a Xervice, an application has to log in to it, using
VCI_Login. The Xervice identifier (dbApplID, see section 6.2.20) is used to specify the desired Xervice
within this call.
Xervice identification data is available at run-time, as soon as a GATE session has been established.
The data supplied by GATE includes Exchange identification information (Market Identification code
(MIC), descriptive text). Thus an application can select an exchange or offer readable information to a
user. This feature allows Front End applications to integrate new Exchanges that were not yet known
at compile-time, using an unchanged executable. This holds true only if the new Exchange offers
VALUES functionality that is identical to the existing Exchange for that the application was designed
and built.
A Front End application can determine if Xervices offered by different electronic exchanges offer
identical VALUES functionality by evaluating Xervice Class information. A Xervice Class is an identifier
that is equal across Xervices which offer identical VALUES functionality, given the Application Version
Number AVN is also equal. For example, if a Front End application was built to work with a certain
exchange using two Xervices, their Xervice Classes being XETRA_TXN_XCLASS and
XETRA_CAQ_XCLASS with AVN_xyz, it is able to work with any other exchange that offers the same
Xervice Classes and AVN. The Xervice Class identifier is supplied in the field applClass of XerviceInfoT
(see section 6.2.2).
GATE supplies Xervice Class information and Xervice identification data via the callback registered
when using VCI_Connect. Please refer to section 3.3.2 for details.

2.10 VALUES API Backwards Compatibility Concepts

In this section, an overview on backwards compatibility concept of VALUES API is given. Call Interface
specific concepts are described in this Volume, while exchange specific concepts are explained in the
related exchange specific volume.
The VALUES API supports backwards compatibility which is defined as support for the current version
and the previous version of application requests, broadcast data structures and the Call Interface. The
backwards compatibility of the Call Interface and the Exchange applications are independent of each
other.

Call Interface (technical components)
The VALUES API supports the Call Interface of the current VALUES API Call Interface release (Call
Interface Version Number CVN x) and is backwards compatible to the Call Interface of the previous
VALUES API Call Interface release (CVN x-1). Each Call Interface entry point must contain a CVN
which defines the version of the Call Interface to be used. All Call Interface entry points submitted
within a VALUES session must correspond to the version specified in the connection request.

Application requests and subscription requests (functional components)
The VALUES API can support application requests of the current release (Application Version Num-
ber AVN x) and be backwards compatible to the previous release (AVN x-1) at the same time. Please
refer to the Exchange application specific volumes to determine if the desired Exchange applica-
tion release offers backwards compatibility. Each login and subscription request must contain an
exchange-specific application version number (AVN) which defines the version of the associated

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Concepts Page 45
Exchange application to be used. All application requests submitted within a login must correspond
to the version specified in the login request.

The version number CVN is published with each VALUES API Call Interface release. The AVN will be
published with each release of the Exchange application. The end user application must use these
numbers to specify the version it intends to use; i.e., the CVN has to be sent with each call of an entry
point and the AVN with each login and subscription request.
Backwards compatibility cannot be guaranteed under all circumstances due to the potential for
changes driven by legal imperatives, technology evolution etc. This means:

Most updates of the VALUES API will not require re-compilation and re-linking of end user applica-
tions.

Some updates of the VALUES API may require re-compilation and re-linking of end user applica-
tions.

In future releases of Exchange applications or GATE, code changes, re-compilation and re-linking of
end user applications may be required.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 46
3 VALUES API Call Interface Reference

3.1 Overview

This section describes the structure of each entry point to the interface, including entry point name,
description and calling syntax. Also, a list of all parameters of which the entry points are comprised is
given. Parameters can be structures in which case a list of fields is given.
Each field listed is marked to show whether it is mandatory (m), optional (o), read-only (ro), or reserved
(r) in the column headed "Usage". Also, fields are marked to show whether they are to be filled by
VALUES (V) or by the end user application (A) in the column headed "Filled By". Fields to be filled by the
end user application may be changed by VALUES. The character "-" in either column indicates that the
information is not applicable for the given field.
Detailed field descriptions are given in section 6. The field descriptions contain information on where
the fields are used, field characteristics such as data type and passing mechanism. The field
description also defines the rules that apply for the individual data fields.
This section describes the following entry points:

VCI_Connect

VCI_Disconnect

VCI_Dispatch

VCI_Login

VCI_Logout

VCI_Submit

VCI_Subscribe

VCI_Unsubscribe.

Subsequently the interface specification for application callbacks is described. VALUES API provides a
function type which must be used to declare the application callbacks referenced in VCI_Connect,
VCI_Login, VCI_Submit and VCI_Subscribe.
All interface parameters detailed in the manual are pointers to data structures. The parameter
callbackCntxtData (application callback context data) and those parameters prefixed “req”(request)
are pointers to data structures populated by the end user application and passed to the Call Interface
entry point.
The first parameter of each entry point is reqControl. The reqControl structure combines data fields
that are common to all entry points and used as Call Interface control information.
Note: It is strongly advised to always use the ReqCntrlT data type to access or copy the fields of
reqControl.
The parameter statusData and those parameters prefixed “resp” (response) denote pointers to data
structures populated by the Call Interface entry point and returned to the end user application. Excep-
tions are the application callbacks, refer to section 3.11 for detailed description on population of the
data structures of application callbacks.
The calling application is responsible for allocation (and de-allocation) of memory sufficient to hold the
different data structures. Please refer to section 4 for details. The VALUES API Call Interface stores
only the pointers to the request and the context data. The application callback parameter must be
populated with a reference to a function. This function’s signature must comply to the application
callback interface specification (see section 3.11).

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 47
It is recommended to initialize all reserved or unused optional data fields passed to the entry points. A
guideline is given in section 6.1.2.
Each entry point returns a status data structure to the VALUES API-based application, containing the
completion status of a call. The following table lists and describes the fields of the status data
structure:

Note: The Exchange application specific completion status is applicable only if the technical
completion code (techComplCode) indicates an unsuccessful request processing.
Depending on the severity of an exception, the end user application should perform different levels of
exception processing.
The following table describes the different levels of severity for exception codes.

For each entry point, a list of the relevant completion codes and their corresponding message text is
provided. For the complete list of technical completion codes see section 5. Functional completion
codes are provided with the Exchange specific volumes.

Exception Source Field Description

Exchange application complSeverity Severity of an exception.

complCode Code which uniquely identifies an exception within the
context of an Exchange application.

complText Decode, or textual representation of the exception.

GATE, techComplSeverity Severity of an exception.

VALUES API techComplCode Code which uniquely identifies an exception.

techComplText Decode, or textual representation of the exception.

Table 3.1 - The Call Interface Status Data Structure

Field Value Description

complSeverity, VCI_SUCCESS Successful completion.

techComplSeverity VCI_WARNING A minor error has occurred. The application may
have to perform error-handling processing
depending on which completion code has been
returned.

VCI_ERROR An error has been detected. The application must
perform error-handling processing depending on
which completion code was returned.

VCI_FATAL A fatal error has occurred. The application should
perform a shutdown.

Table 3.2 - Call Interface Exception Severity Classes

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 48
3.2 State Diagrams

3.2.1 Overview

The VALUES API state diagrams describe which VALUES API calls can be invoked depending on the
current state of the application’s use of VALUES API.
State transitions can be either VALUES API calls invoked by the end user application or application
callbacks invoked by VALUES.
The notation 1..s indicating multiple possible subscriptions, 1..u indicating multiple users and 1..x
indicating multiple Xervices are used for the respective states.
The following sections provide state diagrams for each of the VALUES service categories. State
diagrams for normal operation and description of exception cases are provided.

3.2.2 Normal Operation

Session Management Services

Figure 3.1 - State Diagram for Session Management Services

Disconnected

Connected

ConnectDisconnect

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 49
Security Management Services

Figure 3.2 - State Diagram for Security Management Services

Connected
(no active login)

Pending Requests4

Response Received

Active Logins4

(1..u,1..x)

Login

Dispatch1

Login
Callback3

Login
Callback2

Login
Logout

LogoutLogin

1 Dispatch is called by the application after notification via VMQ.
2 Callback invoked by VALUES at receipt of a login or logout response.
3 Callback invoked by VALUES at receipt of the last logout response (i.e., no more
 active logins).
4 The states "Active Logins" and "Pending Requests" can be active simultaneously,
 in this case transitions are possible from both states.

VALUES internal

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 50
Request Management Services

Figure 3.3 - State Diagram for Request Management Services

Active Log in
(1 ..u ,1 ..x)

Pending R equests

R esponse R ece ived

Subm it

D ispatch 1

A pplication
C allback 3

A pplication
C allback2

S ubm it

1 D ispatch is ca lled by the app lication after notification v ia V M Q .
2 C a llback invoked by V A LU ES at receipt o f an app lica tion response.
3 C a llback invoked by V A LU ES at receipt o f the last app lica tion response
 (i.e., no m ore pending app lica tion requests).

V A LU ES in ternal

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 51
Subscription Management Services (Broadcast Extension assumed)

Figure 3.4 - State Diagram for Subscription Management Services

A c t i v e L o g i n 6

(n o a c t i v e s u b s c r i p t i o n)

P e n d i n g R e q u e s t s 4

R e s p o n s e R e c e i v e d

A c t i v e S u b s c r i p t i o n s 4

(1 . . s , 1 . . x)

S u b s c r i b e

D i s p a t c h 1

S u b s c r i p t i o n
C a l l b a c k 3

S u b s c r i p t i o n
C a l l b a c k 2

S u b s c r i b e
U n s u b s c r i b e

U n s u b s c r i b eS u b s c r i b e

1 D i s p a t c h i s c a l l e d b y t h e a p p l i c a t i o n a f t e r n o t i f i c a t i o n v i a V M Q .
2 C a l l b a c k i n v o k e d b y V A L U E S a t r e c e i p t o f a s u b s c r i p t i o n o r u n s u b s c r i p t i o n r e s p o n s e .
3 C a l l b a c k i n v o k e d b y V A L U E S a t r e c e i p t o f t h e l a s t u n s u b s c r i p t i o n r e s p o n s e (i . e . , n o m o r e
 a c t i v e s u b s c r i p t i o n s) .
4 T h e s t a t e s " A c t i v e S u b s c r i p t i o n s " a n d " P e n d i n g R e q u e s t s " c a n b e a c t i v e s im u l t a n e o u s l y , i n
 t h i s c a s e t r a n s i t i o n s a r e p o s s i b l e f r o m b o t h s t a t e s .
5 C a l l b a c k i n v o k e d b y V A L U E S a t r e c e i p t o f a b r o a d c a s t m e s s a g e .

B r o a d c a s t R e c e i v e d

D i s p a t c h 1S u b s c r i p t i o n
C a l l b a c k 5

V A L U E S i n t e r n a l

 6 C o m p a r e t h e B r o a d c a s t E x t e n s i o n s e c t i o n

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 52
3.2.3 Exception Handling

A range of exceptions can occur when using the VALUES API. VALUES API exception handling
performs a state change if applicable and notifies the end user application either by returning a status,
or by invoking one or more callbacks.
In the following tables, the main exception cases are listed with the VALUES state after the exception
is handled and a description of the notification mechanism (including the techComplSeverity and
techComplCode) is provided.

Exception Resulting State

The end user application disconnects from VALUES while requests are
pending, logins are active, or subscriptions are active.

Disconnected

Notification Mechanism:

Callbacks are invoked in sequence:

1. Login callback – for each active login
techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_XERVICE_NOT_AVAILABLE

2. Submit callback – for each pending request (including login, logout, sub-
scribe and unsubscribe)
techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_PENDING_REQUEST_DELETED

3. Subscribe callback – for each active subscription
techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_SUBSCRIPTION_DELETED

4. Connection callback
depending on disconnection response completion code either
techComplSeverity: VCI_SUCCESS
techComplCode: ELB_TECH_OK
or
techComplSeverity: VCI_ERROR
techComplCode: ELB_TECH_REQ_UNSUCCESSFUL

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 53
Exception Resulting State

The end user application performs a logout while requests are pending. Connected

Notification Mechanism:

Callbacks are invoked in sequence:

1. Login callback – for the specific login
techComplSeverity: VCI_SUCCESS
techComplCode: ELB_TECH_LOGGED_OUT

2. Submit callback – for each pending request of the specific login
techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_ PENDING_REQUEST_DELETED

3. Subscribe callback – for each pending subscription request of the spe-
cific login, if Broadcast Extension is implemented by the Xervice (see
section 2.5.2).

4. techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_ PENDING_REQUEST_DELETED

5. Subscribe callback – for each active subscription of the specific login

6. techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_SUBSCRIPTION _DELETED

7. Connection callback
techComplSeverity: VCI_SUCCESS
techComplCode: ELB_TECH_LOGGED_OUT

Exception Resulting State

Improper use of entry points (i.e., state transition not displayed in the state
diagrams for normal operation) or invalid parameters passed to entry
points.

No change

Notification Mechanism:

The entry point returns with a status indicating the exception.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 54
Exception Resulting State

Failed validation of application request data. No change

Notification Mechanism:

The submit callback is invoked with a status indicating the exception.

Exception Resulting State

Exchange Service unavailable. Active Logins /
Connected1

1. If all Exchange applications are unavailable the resulting state is “Connected”.

Notification Mechanism:

Callbacks are invoked in sequence:

1. Login callback – for each active login of the specific Exchange Service
techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_XERVICE_NOT_AVAILABLE

2. Submit, Login, Subscribe(Broadcast Extension only) callback – per
pending request of the specific Exchange Service (including submit,
login, logout, subscribe and unsubscribe)
techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_ PENDING_REQUEST_DELETED

3. Subscription callback – per active subscription of the specific
Exchange.

4. techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_ SUBSCRIPTION_DELETED

5. Connection callback
techComplSeverity: VCI_SUCCESS
techComplCode: ELB_TECH_XERVICE_NOT_AVAILABLE

The associated Exchange Service is specified in dbApplID of reqControl.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 55
Exception Resulting State

GATE (Technical Services) unavailable Disconnected

Notification Mechanism:

Callbacks are invoked in sequence:

1. Login callback – for each active login
techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_XERVICE_NOT_AVAILABLE

2. Submit callback – for each pending request (including login, logout, sub-
scribe and unsubscribe)
techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_ PENDING_REQUEST_DELETED

3. Subscribe callback – for each active subscription
techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_SUBSCRIPTION_DELETED

4. Connection callback
techComplSeverity: VCI_FATAL
techComplCode: ELB_TECH_TECHSRCV_NOT_AVAILABLE

Exception Resulting State

MISS non-transparent failover for an Exchange Service which does not
support retransmission of application requests.

Active Logins/
Connected

Notification Mechanism:

Callbacks are invoked in sequence:

1. Login callback – for each active login of the specific Exchange Service
techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_NONTRANSPARENT_FAILOVER

2. Submit/Login/Subscribe callback – per pending request of the specific
Exchange Service request (including submit, login, logout, subscribe
and unsubscribe)
techComplSeverity: VCI_WARNING
techComplCode: ELB_TECH_ PENDING_REQUEST_DELETED

3. Connection callback
techComplSeverity: VCI_SUCCESS
techComplCode: ELB_TECH_NONTRANSPARENT_FAILOVER

The associated Exchange Service is specified in dbApplID of reqControl.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 56
3.3 VCI_Connect

3.3.1 Overview

Description This Call Interface entry point is used to connect to GATE. VCI_Connect
initiates and performs linkage of the application with VALUES to send
requests to Exchange Services and receive responses. VCI_Connect is the
entry point which initiates a VALUES session. After a successful
VCI_Connect, the application can send login requests to Exchange
Services. When using a Xervice that does not implement Broadcast
Extension (see section 2.5.2), it is also possible to subscribe to broadcast
streams, without a previous login.

VCI_Connect requires registration of an application callback to receive
notification and exceptions (e.g., Exchange Service availability). Associated
with the callback, the application can specify custom context data which is
buffered by VALUES and returned to the application when the callback is
invoked. Only the address of the context data specified by End User appli-
cation is stored by VALUES. Typically, VCI_Connect is invoked at startup of
the application.

VCI_Connect is a synchronous request which, if successful, returns the
name of the VALUES message queue (VMQname) which the application
must monitor. In order to avoid interruption of VCI_Connect, asynchronous
events (e.g. UNIX signals) should be disabled by the application.

Note: The VMQ must be monitored for events immediately after successful
session establishment, and monitoring must be sustained until discon-
necting the session.

For the Call Interface field descriptions please refer to section 6.

Syntax void VCI_Connect (

ReqCntrlT *reqControl,

CnctReqDataT *reqData,

AppCallbackT *callbackFunc,

AppCntxtDataT *callbackCntxtData,

CnctRespDataT *respData,

StatusDataT *statusDataGlobal

);

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 57
Parameter Name Fields Usage Filled By

reqControl VCIver (see section 3.3.2) m A

connectionID r -

dbApplID r -

loginID r -

appDescr r -

reqID r -

resubmitFlag r -

resubmitNo r -

reqData userID m A

password m A

callbackFunc (reference to the application
exception callback function, see
section 3.3.3)

m A

callbackCntxtData custBlockSize m A

custData o A

respData connectionID ro V

VMQname ro V

prodMode ro V

statusDataGlobal complSeverity ro V

complCode ro V

complText ro V

techComplSeverity ro V

techComplCode ro V

techComplText ro V

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 58
Status Field Name Value Text

complSeverity, VCI_SUCCESS

techComplSeverity VCI_WARNING

VCI_ERROR

VCI_FATAL

complCode, ELB_TECH_INVALID_PASSWORD INVALID PASSWORD

complText ELB_TECH_INVALID_USER USER IS NOT ALLOWED TO USE
THE EXCHANGE SERVICE OR
USER IS NOT REGISTERED

ELB_TECH_INVALID_USER_OR_
PASSWORD

INVALID USER OR PASSWORD1

1.Applies to Windows platforms only.

ELB_TECH_BADLY_FORMED_
PARAMETER

A PARAMETER WAS EITHER
INVALID OR HAD INVALID
CHARACTERSa

techComplCode, ELB_TECH_OK SUCCESSFUL COMPLETION

techComplText ELB_TECH_INVALID_PARAMETER INVALID PARAMETER PASSED

ELB_TECH_INTERNAL_ERROR INTERNAL ERROR OCCURRED

ELB_TECH_ALREADY_
CONNECTED

APPLICATION ALREADY
CONNECTED

ELB_TECH_CONNECTION_LIMIT_
REACHED

MAXIMUM NUMBER OF CONNEC-
TIONS REACHED

ELB_TECH_REQ_UNSUCCESSFUL REQUEST NOT SUCCESSFULLY
PROCESSED

ELB_TECH_TECHSRV_NOT_
AVAILABLE

TECHNICAL SERVICES NOT
AVAILABLE

ELB_TECH_XERVICE_NOT_
AVAILABLE

EXCHANGE SERVICE NOT
AVAILABLE

ELB_TECH_NOT_REENTRANT VALUES CALLS ARE NOT
REENTRANT

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 59
3.3.2 VALUES Call Interface Version

The VALUES API conceptually supports backwards compatibility of the Call Interface. This document
describes version 1.2 of the VALUES API Call Interface. The VALUES Call Interface Vresion VCIver can
be set to CVN_xxx where “xxx” is depending on which version the end user application intends to use.
The specific constant CVN_xxx is defined in the header Values.h which is delivered with the VALUES
API header package.
With GATE Release 3.5, the Call Interface Version constant to be used is CVN_012. This is the same
Call Interface Version as used since GATE Release 3.1.
Note: Within one VALUES session the same CVN must be used for all entry points. This is checked by
VALUES.

3.3.3 The Connect Application Callback

The connect application callback is used to notify the end user application of exceptions (e.g., GATE
unavailable). It is also used to notify the end user application of Exchange Service availability state
changes (i.e., Xervice available or unavailable). After successful completion of VCI_Connect the
connect application callback is invoked by VALUES for each Exchange Service available.
Please refer to section 3.11 for details on the application callback function type, parameter, and
completion code.
Notification of exceptions and availibility state changes are returned with the status data of the
connect application callback. In case of an event associated to a certain Xervice (see section 2.9 for
a description of the Xervice concept), the following information is passed to the callback function (as a
pointer to a struct of type XerviceInfoT):

This applies to callbacks invoked with the following completion codes (techComplCod):

ELB_TECH_XERVICE_AVAILABLE

ELB_TECH_XERVICE_NOT_AVAILABLE

ELB_TECH_LOGGED_OUT

ELB_TECH_NONTRANSPARENT_FAILOVER

Please note that the dbApplID identifying the Xervice that has triggered the event is always available
from the Request control structure (reqControl->dbApplID) in these cases.

Parameter Name Fields Usage Filled By

appRespData applClass - V

applVersion - V

applPrevVersion - V

exchApplId - V

exchDscrName - V

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 60
3.4 VCI_Disconnect

Description This Call Interface entry point is used by the end user application to
disconnect from a VALUES session. VCI_Disconnect is typically called at
shutdown of the end user application to terminate a session.

VCI_Disconnect is a synchronous request. In order to avoid interruption of
VCI_Disconnect, asynchronous events (e.g. UNIX signals) should be
disabled by the application.

Syntax void VCI_Disconnect(

ReqCntrlT *reqControl,

DiscnctReqDataT *reqData,

StatusDataT *statusDataGlobal

);

Parameter Name Fields Usage Filled By

reqControl VCIver m A

connectionID m A

dbApplID r -

loginID r -

appDescr r -

reqID r -

resubmitFlag r -

resubmitNo r -

reqData n/a r -

statusDataGlobal complSeverity r -

complCode r -

complText r -

techComplSeverity ro V

techComplCode ro V

techComplText ro V

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 61
3.5 VCI_Dispatch

Description This Call Interface entry point is used by the end user application to service
Exchange Service responses, broadcast data, notifications, and excep-
tions. The end user application is responsible for checking the VMQ for
events. In case of any event, the application should call VCI_Dispatch.
VCI_Dispatch will read the associated data from the VALUES message
queue and pass it on to the appropriate application callback. VCI_Dispatch
is a synchronous request, which returns to the calling end user application
on completion of the invocation of application callback(s).

VCI_Dispatch identifies the application callback to be invoked based on a
VALUES-internal table in which each application connection, login, request,
subscription and the associated callback are stored. For more information
on how to integrate VALUES events please refer to section 2.6.

Status Field Name Value Text

complSeverity n/a

techComplSeverity VCI_SUCCESS

VCI_WARNING

VCI_ERROR

VCI_FATAL

complCode, n/a

complText

techComplCode, ELB_TECH_OK SUCCESSFUL COMPLETION

techComplText ELB_TECH_INVALID_PARAMETER INVALID PARAMETER PASSED

ELB_TECH_INTERNAL_ERROR INTERNAL ERROR OCCURRED

ELB_TECH_NOT_CONNECTED APPLICATION NOT CONNECTED

ELB_TECH_NOT_REENTRANT VALUES CALLS ARE NOT
REENTRANT

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 62
Syntax void VCI_Dispatch(

ReqCntrlT *reqControl,

StatusDataT *statusDataGlobal

);

Parameter Name Fields Usage Filled By

reqControl VCIver m A

connectionID m A

dbApplID r -

loginID r -

appDescr r -

reqID r -

resubmitFlag r -

resubmitNo r -

statusDataGlobal complSeverity r -

complCode r -

complText r -

techComplSeverity ro V

techComplCode ro V

techComplText ro V

Status Field Name Value Text

complSeverity n/a

techComplSeverity VCI_SUCCESS

VCI_WARNING

VCI_ERROR

VCI_FATAL

complCode, n/a

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 63
3.6 VCI_Login

Description This Call Interface entry point is used by the end user application to login
to Exchange Services. Before sending any application requests, user
authorization must be acquired from the appropriate Exchange Service by
calling VCI_Login for each desired Exchange Service. This is an
asynchronous request. For Xervices that implement the Broadcast
Extension (see section 2.5.2), authorization is required for subscriptions to
broadcast streams as well.

VCI_Login requires registration of an application callback. The login
callback is used for receipt of login and logout responses or to notify the
end user application of exceptional cases (e.g., failure of Exchange
Service).

The login response is received asynchronously via the registered callback.
The status (techComplCode) of the application callback explicitly indicates
receipt of login and logout responses.

The end user application may call VCI_Login multiple times to login several
users. The login response returns a unique loginID for each successful
login. The returned loginID must be specified for each subsequent call to
VCI_Submit or VCI_Logout to authorize the specific user. In case of a
Xervice using Broadcast Extension (see section 2.5.2), this also applies to
VCI_Subscribe.

complText

techComplCode, ELB_TECH_OK SUCCESSFUL COMPLETION

techComplText ELB_TECH_INVALID_PARAMETER INVALID PARAMETER PASSED

ELB_TECH_INTERNAL_ERROR INTERNAL ERROR OCCURRED

ELB_TECH_NOT_CONNECTED APPLICATION NOT CONNECTED

ELB_TECH_MSG_DISCARDED UNMAPPABLE MESSAGE
DISCARDED

ELB_TECH_NOT_REENTRANT VALUES CALLS ARE NOT
REENTRANT

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 64
Syntax void VCI_Login(

ReqCntrlT *reqControl,

LoginReqDataT *reqData,

AppCallbackT *callbackFunc,

AppCntxtDataT *callbackCntxtData,

LoginRespDataT *respData,

StatusDataT *statusDataGlobal

);

Parameter Name Fields Usage Filled By

reqControl VCIver m A

connectionID m A

dbApplID m A

loginID r -

appDescr r -

reqID r -

resubmitFlag r -

resubmitNo r -

reqData 1

1.Refer to Exchange application specific volumes for details.

userID m A

applVersion m A

authorizationData m A

authorizationDataLength m A

callbackFunc (ref. to the application callback) m A

callbackCntxtData custBlockSize m A

custData o A

respData n/a r -

statusDataGlobal complSeverity r -

complCode r -

complText r -

techComplSeverity ro V

techComplCode ro V

techComplText ro V

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 65
3.6.1 The Login Application Callback

The login application callback is used to receive login and logout responses and to notify the end user
application of exceptions (e.g., Exchange Service unavailable). Please refer to section 3.11 for details
on the application callback function type, parameter, and completion codes. For login responses, the
following data (LoginRespDataT) is returned by the application callback:

Status Field Name Value Text

complSeverity n/a

techComplSeverity VCI_SUCCESS

VCI_WARNING

VCI_ERROR

VCI_FATAL

complCode, n/a

complText

techComplCode, ELB_TECH_OK SUCCESSFUL COMPLETION

techCompltext ELB_TECH_INVALID_PARAMETER INVALID PARAMETER PASSED

ELB_TECH_INTERNAL_ERROR INTERNAL ERROR OCCURRED

ELB_TECH_NOT_CONNECTED APPLICATION NOT CONNECTED

ELB_TECH_LOGIN_NUM_EXCEEDED MAXIMUM NUMBER OF LOGINS
EXCEEDED

ELB_TECH_XERVICE_NOT_AVAILABLE EXCHANGE SERVICE NOT
AVAILABLE

ELB_TECH_TOO_MANY_PENDING_
REQUESTS

TOO MANY PENDING REQUESTS
IN QUEUE

ELB_TECH_NOT_REENTRANT VALUES CALLS ARE NOT
REENTRANT

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 66
The status of the login and logout response or notification of exceptions is returned with the status
data of the login application callback.

3.7 VCI_Logout

Description This Call Interface entry point is used by the end user application to logout
from Exchange Services.

VCI_Logout is an asynchronous request.

VCI_Logout performs a logout of a specific user login, identified by the
loginID.

VALUES forwards the logout request to the specified Exchange Service.
The response of a logout request is received asynchronously via the appli-
cation callback registered with the corresponding login request. Receipt of
logout responses is indicated explicitly through the status (techCom-
plCode) of the application callback. Please refer to section 3.11 and
section 3.6.1 for details on the login application callback.

Syntax void VCI_Logout(

ReqCntrlT *reqControl,

LogoutReqDataT *reqData,

LogoutRespDataT *respData,

StatusDataT *statusDataGlobal

);

Parameter Name Fields Usage Filled By

appRespData funcResult r -

loginID ro V

Parameter Name Fields Usage Filled By

reqControl VCIver m A

connectionID m A

dbApplID m A

loginID m A

appDescr r -

reqID r -

resubmitFlag r -

resubmitNo r -

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 67
reqData n/a r -

respData n/a r -

statusDataGlobal complSeverity r -

complCode r -

complText r -

techComplSeverity ro V

techComplCode ro V

techComplText ro V

Status Field Name Value Text

complSeverity n/a

techComplSeverity VCI_SUCCESS

VCI_WARNING

VCI_ERROR

VCI_FATAL

complCode, n/a

complText

techComplCode, ELB_TECH_OK SUCCESSFUL COMPLETION

techComplText ELB_TECH_INVALID_PARAMETER INVALID PARAMETER PASSED

ELB_TECH_INTERNAL_ERROR INTERNAL ERROR OCCURRED

ELB_TECH_NOT_CONNECTED APPLICATION NOT CONNECTED

ELB_TECH_TOO_MANY_PENDING_
REQUESTS

TOO MANY PENDING REQUEST IN
QUEUE

ELB_TECH_NOT_LOGGED_IN USER NOT LOGGED IN

ELB_TECH_NOT_REENTRANT VALUES CALLS ARE NOT
REENTRANT

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 68
3.8 VCI_Submit

Description This Call Interface entry point is used by end user applications to send
processing requests to Exchange Services. The end user application
specifies a request ID, request data, and an application callback.
Associated with the callback, the application can specify custom context
data which pointer is returned to the application when the callback is
invoked. VALUES stores only the pointers to the requests and the custom
context data. It does not store the actual data. VALUES forwards the
request to the appropriate Exchange Service. The application response is
routed back to the requester through the application-specified callback.

When calling VCI_Submit, the loginID must be specified to authenticate a
specific user. The loginID must have been previously obtained through
VCI_Login.

VCI_Submit is an asynchronous entry point.

Syntax void VCI_Submit(

ReqCntrlT *reqControl,

SubmitReqDataT *reqData,

AppCallbackT *callbackFunc,

AppCntxtDataT *callbackCntxtData,

StatusDataT *statusDataGlobal

);

Parameter Name Fields Usage Filled By

reqControl VCIver m A

connectionID m A

dbApplID m A

loginID m A

appDescr r -

reqID m A

resubmitFlag r -

resubmitNo o1 A

reqData appReqBlockSize m A

appReq m A

callbackFunc (reference to callback function) m A

callbackCntxtData custBlockSize m A

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 69
custData o A

statusDataGlobal complSeverity r -

complCode r -

complText r -

techComplSeverity ro V

techComplCode ro V

techComplText ro V

1. Application request resubmission is supported by some Exchange applications. Please refer to the Exchange spe-
cific volumes for details.

Status Field Name Values Text

complSeverity n/a

techComplSeverity VCI_SUCCESS

VCI_WARNING

VCI_ERROR

VCI_FATAL

complCode, n/a

complText

techComplCode, ELB_TECH_OK SUCCESSFUL COMPLETION

techComplText ELB_TECH_INVALID_PARAMETER INVALID PARAMETER PASSED

ELB_TECH_INTERNAL_ERROR INTERNAL ERROR OCCURRED

ELB_TECH_NOT_CONNECTED APPLICATION NOT CONNECTED

ELB_TECH_TOO_MANY_PENDING_
REQUESTS

TOO MANY PENDING REQUESTS
IN QUEUE

ELB_TECH_NOT_LOGGED_IN USER NOT LOGGED IN

ELB_TECH_NOT_REENTRANT VALUES CALLS ARE NOT
REENTRANT

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 70
3.8.1 The Submit Application Callback

The application callback is used to notify the end user application of responses and exceptions (e.g.,
GATE unavailable). Please refer to section 3.11 for details on the application callback function type,
parameter and completion codes.

The status of the request processing or notification of exception is returned with the status data of the
submit application callback.

3.9 VCI_Subscribe

Description This Call Interface entry point is used by the end user application to
subscribe to data streams. Before subscribing to a data stream, the appli-
cation must have successfully established a session (via VCI_Connect). For
Xervices that implement the Broadcast Extension (see section 2.5.2), login
authorization is required as well. On calling VCI_Subscribe, the application
must identify the desired data stream and register an application callback.
Associated with the callback, the application can specify custom context
data which is returned to the application when the callback is invoked.
VALUES stores only the pointers to the request and the custom context
data.

VCI_Subscribe is an asynchronous request which can result in multiple
types of responses: subscription response and subscription data. The
response to a subscription request is received asynchronously via the
registered application callback. Receipt of subscription responses is
indicated explicitly through the status (techComplCode) of the application
callback. A subscription is active only after receipt of a successful
subscription response.

Data arriving through an active subscription is also passed to the end user
application via the same registered application callback. The end user
application can distinguish between received subscription data and
received subscription/unsubscription responses through the status
(techComplCode) of the application callback. Please refer to section 3.11
for the specific techComplCode.

A special subscription subject is available that enables the transmission of
Gap Notifications within a stream it has been used on. For this purpose,
reqData.subject, reqData.subjectLength and reqData.applVersion have to
be set to the special values SUBJECT_GAPINFO,
strlen(SUBJECT_GAPINFO), and SUBJECT_GAPINFO_VERSION. Please

Parameter Name Fields Usage Filled By

appRespData Refer to Exchange application
specific volumes

- -

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 71
note that a wildcard subscription is not sufficient to receive Gap Messages.
When receiving gap information in the callback registered by
VCI_Subscribe, the subject is set to SUBJECT_GAPINFO. The subscription
must be unsubscribed normally when Gap Messages are no longer
required.

For recoverable broadcasts, usage of the Exchange application specific
procedure (Broadcast Retransmission) should be preferred over the
SUBJECT_GAPINFO mechanism.

Syntax void VCI_Subscribe(

ReqCntrlT *reqControl,

SubsReqDataT *reqData,

AppCallbackT *callbackFunc,

AppCntxtDataT *callbackCntxtData,

SubsRespDataT *respData,

StatusDataT *statusDataGlobal);

Parameter Name Fields Usage Filled By

reqControl VCIver m A

connectionID m A

dbApplID m A

loginID m/r A, only for Xervices
with Broadcast
Extension, see
section 2.5.2

appDescr r -

reqID r -

resubmitFlag r -

resubmitNo r -

reqData subsSubject r -

applVersion1 m A

streamType m A

subjectLength m A

subject2 m A

userID r -

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 72
authorizationDataLength r -

authorizationData r -

callbackFunc (reference to callback function) m A

callbackCntxtData custBlockSize m A

custData o A

respData n/a r -

statusDataGlobal complSeverity r -

complCode r -

complText r -

techComplSeverity ro V

TechComplCode ro V

TechComplText ro V

1. For subscription to the stream’s Gap Messages, set applVersion = SUBJECT_GAPINFO_VERSION, subject =
SUBJECT_GAPINFO, and subjectLength = strlen(SUBJECT_GAPINFO).
2. The structure of subject is defined in the Exchange specific volumes with each subscription request.

Status Field Name Value Text

ComplSeverity n/a

TechComplSeverity VCI_SUCCESS

VCI_WARNING

VCI_ERROR

VCI_FATAL

complCode, n/a

complText

techComplCode, ELB_TECH_OK SUCCESSFUL COMPLETION

techComplText ELB_TECH_INVALID_PARAMETER INVALID PARAMETER PASSED

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 73
3.9.1 The Subscription Application Callback

The subscription application callback is used to receive subscription responses. Please refer to
section 3.11 for details on the application callback function type, parameter and completion codes.
For subscription responses, the following data (SubsRespDataT) is returned by the application
callback.

The status of the subscription response or notification of exceptions is returned with the status data of
the subscription application callback.
Broadcasts may occur at high frequency, depending on which subscriptions are active. To make sure
that an application can receive these broadcasts fast enough to avoid the VMQ being overrun, imple-
menting lean subscription callbacks should be a primary design goal. If processing the broadcast data
can be expected to take a considerable amount of time, it should be done in a way that does not slow
down the reception of further broadcasts. In case of a VMQ overflow, GATE drops the application’s
VALUES session, and the application is being disconnected.

3.10 VCI_Unsubscribe

Description This Call Interface is used by the end user application to end subscription
to the specified data stream. Ending a subscription results in turning off
the data stream and removing the broadcast callback reference maintained
by VALUES.

VCI_Unsubscribe is an asynchronous request.

The response of an unsubscription request is received via the application
callback registered with the corresponding subscription request. Receipt
of unsubscription responses is indicated explicitly through the status
(techComplCode) of the application callback.

ELB_TECH_INTERNAL_ERROR INTERNAL ERROR OCCURRED

ELB_TECH_NOT_CONNECTED APPLICATION NOT CONNECTED

ELB_TECH_TOO_MANY_PENDING_
REQUESTS

TOO MANY PENDING REQUESTS
IN QUEUE

ELB_TECH_NOT_LOGGED_IN USER NOT LOGGED IN (only for
Xervices that implement
Broadcast Extension, see section
2.5.2

ELB_TECH_NOT_REENTRANT VALUES CALLS ARE NOT
REENTRANT

Parameter Name Fields Usage Filled By

AppRespData subsID ro V

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 74
Please refer to section 3.9.1 for details on the subscription application
callback.

Syntax void VCI_Unsubscribe(

ReqCntrlT *reqControl,

UnsubsReqDataT *reqData,

UnsubsRespDataT *respData,

StatusDataT *statusDataGlobal

);

Parameter Name Fields Usage Filled By

reqControl VCIver m A

connectionID m A

dbApplID r -

loginID r -

appDescr r -

reqID r -

resubmitFlag r -

resubmitNo r -

reqData subsID m A

respData n/a r -

StatusDataGlobal complSeverity r -

complCode r -

complText r -

techComplSeverity ro V

techComplCode ro V

techComplText ro V

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 75
Status Field Name Value Text

complSeverity n/a

techComplSeverity VCI_SUCCESS

VCI_WARNING

VCI_ERROR

VCI_FATAL

complCode, n/a

complText

techComplCode, ELB_TECH_OK SUCCESSFUL COMPLETION

techComplText ELB_TECH_INVALID_PARAMETER INVALID PARAMETER PASSED

ELB_TECH_INTERNAL_ERROR INTERNAL ERROR OCCURRED

ELB_TECH_NOT_CONNECTED APPLICATION NOT CONNECTED

ELB_TECH_TOO_MANY_PENDING_
REQUESTS

TOO MANY PENDING REQUESTS
IN QUEUE

ELB_TECH_NOT_SUBSCRIBED STREAM NOT SUBSCRIBED

ELB_TECH_NOT_REENTRANT VALUES CALLS ARE NOT
REENTRANT

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 76
3.11 Application Callback Function Type

Type Name AppCallbackT

Description Callbacks of this type are implemented in the end user application and are
invoked by VALUES to perform asynchronous processing in response to
application requests (including login, logout, subscribe and unsubscribe),
subscriptions, and exceptions. All callbacks have the same interface and
can be registered through the entry points VCI_Connect, VCI_Login,
VCI_Submit, and VCI_Subscribe.

Associated with a registered callback, the application can specify custom
context data which pointer is returned to the application when the callback
is invoked. VALUES stores only the pointers to the request and the custom
context data. The actual data is not stored by VALUES. Both fields have to
be de-allocated by the end user application. Application callbacks are
called synchronously by VCI_Dispatch.

All data structures are allocated and populated by the application. The
statusData structure passes status about the processing of the request,
subscription, or exception to the end user application.

The data structure pointed at by the parameter appData contains appli-
cation response and application request data. The pointer to the original
application request data is passed back to the application.

Note: It is not allowed to call any VALUES API entry points from within an
application callback. Calling any VCI entry point will fail with
ELB_TECH_NOT_REENTRANT when used inside a callback invoked by
VCI_Dispatch.

Syntax typedef void (AppCallbackT) (

ReqCntrlT *reqControl,

CallBkAppDataT *appData,

AppCntxtDataT *callbackCntxtData,

StatusDataT *statusDataGlobal

);

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 77
Parameter Name Fields Usage Filled By

reqControl VCIver r -

connectionID r -

dbApplID 1

1. Always set, except in case of connection callback with techComplCode: ELB_TECH_OK,
ELB_TECH_TECHSRVC_NOT_AVAILABLE, ELB_TECH_REQ_UNSUCCESSFUL

ro V

loginID 1 ro V

appDescr r -

reqID ro V

resubmitFlag 2

2. Only set in case of login callback (except for login response), in connection callback with techComplCode:
ELB_TECH_LOGGED_OUT and in submission callback

ro V

resubmitNo 2 ro V

AppData appRespBlockSize ro V

appRespData ro V

subsID ro V (used for subscription callbacks only)

subject r -

appReqBlockSize ro V (used for request callbacks only)

appReqData ro V

applVersion ro V (except VCI_Connect callback)

streamType ro V (used for subscription callbacks only)

brcSubject3

3. The structure of brcSubject is defined in the Exchange specific volumes with each subscription request.

ro V (used for subscription callbacks only)

CallbackCntxtData custBlockSize ro V

custData ro V

StatusDataGlobal complSeverity ro V

complCode ro V

complText ro V

techComplSeverity ro V

techComplCode ro V

techComplText ro V

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 78
Status Field Name Value

ComplSeverity VCI_SUCCESS

TechComplSeverity VCI_WARNING

VCI_ERROR

VCI_FATAL

complCode,complText These fields return Exchange application specific completion status.
Please refer to the Exchange application specific volumes for a detailed
list of completion codes generated by each Exchange application.

Connection Callback

Triggering VCI entry
point techComplCode techComplText

VCI_Dispatch
(error reading message
sent by GATE)

ELB_TECH_TECHSRVC_NOT_
AVAILABLE

TECHNICAL SERVICES NOT
AVAILABLE

VCI_Dispatch
(Exchange Service notifi-
cation)

ELB_TECH_XERVICE_NOT_
AVAILABLE

EXCHANGE SERVICE NOT
AVAILABLE

ELB_TECH_XERVICE_AVAILABLE EXCHANGE SERVICE AVAILABLE

ELB_TECH_NONTRANSPARENT_
FAILOVER

NONTRANSPARENT FAILOVER

VCI_Dispatch
(disconnect state caused
by callback invocation)

ELB_TECH_TECHSRVC_NOT_
AVAILABLE

TECHNICAL SERVICES NOT
AVAILABLE

VCI_Dispatch
(response of VCI_Logout
request)

ELB_TECH_LOGGED_OUT USER LOGGED OUT SUCCESS-
FULLY

VCI_Disconnect
(syncronous)

ELB_TECH_OK 1

1. Indicates successful disconnection

SUCCESSFUL COMPLETION

ELB_TECH_REQ_ UNSUCCESSFUL2

2. Indicates failed disconnection

REQUEST NOT SUCCESSFULLY
PROCESSED

Table 3.3 - Connection Callback

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 79
Login Callback

Triggering VCI entry
point techComplCode techComplText

VCI_Dispatch
(response of VCI_Login
request)

ELB_TECH_LOGGED_IN 1

1. Indicates receipt of a successful login response containing login ID

USER LOGGED IN SUCCESSFULLY

ELB_TECH_INTERNAL_ERROR 2

2. Indicates internal error while processing of login request

INTERNAL ERROR OCCURRED

ELB_TECH_REQ_ UNSUCCESSFUL3

3. Login not allowed

REQUEST NOT SUCCESSFULLY
PROCESSED

VCI_Dispatch
(error reading message
sent by GATE)

ELB_TECH_TECHSRVC_NOT_
AVAILABLE

TECHNICAL SERVICES NOT
AVAILABLE

ELB_TECH_PENDING_REQUEST_
DELETED 4

4. Indicates unconfirmed login request

PENDING REQUEST DELETED

Table 3.4 - Login Callback

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 80
Login Callback (Logout)

Triggering VCI entry
point techComplCode techComplText

VCI_Dispatch
(Exchange Service notifi-
cation)

ELB_TECH_XERVICE_NOT_
AVAILABLE

EXCHANGE SERVICE NOT
AVAILABLE

ELB_TECH_NONTRANSPARENT_
FAILOVER

NONTRANSPARENT FAILOVER

ELB_TECH_PENDING_REQUEST_
DELETED1

1. Indicates unconfirmed login/logout request

PENDING REQUEST DELETED

VCI_Dispatch
(response of VCI_Logout
request)

ELB_TECH_LOGGED_OUT2

2. Indicates receipt of a successful logout response

USER LOGGED OUT SUCCESS-
FULLY

ELB_TECH_TECHSRVC_NOT_
AVAILABLE

TECHNICAL SERVICES NOT
AVAILABLE

VCI_Disconnect ELB_TECH_XERVICE_NOT_
AVAILABLE

EXCHANGE SERVICE NOT
AVAILABLE

ELB_TECH_PENDING_REQUEST_
DELETED1

PENDING REQUEST DELETED

Table 3.5 - Login Callback (Logout)

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 81
Subscription Callback

Triggering VCI entry
point techComplCode techComplText

VCI_Dispatch
(response of
VCI_Subscribe request)

ELB_TECH_SUBSCRIBED 1

1. Indicates receipt of a successful subscription response

STREAM SUBSCRIBED

ELB_TECH_INTERNAL_ERROR 2

2. Indicates internal error while processing the subscription request

INTERNAL ERROR OCCURRED

ELB_TECH_OK 3

3. Indicates successful receipt of a broadcast

SUCCESSFUL COMPLETION

ELB_TECH_RQ_UNSUCCESSUL REQUEST NOT SUCCESSFULLY
PROCESSED

VCI_Dispatch
(receipt of broadcast
messages)

ELB_TECH_OK 3 SUCCESSFUL COMPLETION

VCI_Dispatch
(error reading message
sent by GATE)

ELB_TECH_SUBSCRIPTION_
DELETED

SUBSCRIPTION DELETED

ELB_TECH_PENDING_REQUEST_
DELETED 4

4. Indicates unconfirmed subscription/unsubscription request

PENDING REQUEST DELETED

VCI_Dispatch
(response of
VCI_Unsubscribe request)

ELB_TECH_UNSUBSCRIBED 5

5. Indicates receipt of a successful unsubscription response

STREAM UNSUBSCRIBED

ELB_TECH_INTERNAL_ERROR 2 INTERNAL ERROR OCCURRED

VCI_Dispatch
(response of VCI_Logout,
only for Xervices with
Broadcast Extension, see
section 2.5.2)

ELB_TECH_SUBSCRIPTION_
DELETED

SUBSCRIPTION DELETED

VCI_Disconnect ELB_TECH_SUBSCRIPTION_
DELETED

SUBSCRIPTION DELETED

ELB_TECH_PENDING_REQUEST_
DELETED 4

PENDING REQUEST DELETED

Table 3.6 - Subscription Callback

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Reference Page 82
Submit Callback

Triggering VCI entry
point techComplCode techComplText

VCI_Dispatch
(response of VCI_Submit
request)

ELB_TECH_OK SUCCESSFUL COMPLETION

ELB_TECH_REQ_UNSUCESSFUL REQUEST NOT SUCCESSFULLY
PROCESSED

ELB_TECH_INTERNAL_ERROR INTERNAL ERROR OCCURRED

VCI_Dispatch
(error reading message
sent by GATE)

ELB_TECH_PENDING_REQUEST_
DELETED

PENDING REQUEST DELETED

VCI_Dispatch
(Exchange Service notifi-
cation)

ELB_TECH_PENDING_REQUEST_
DELETED

PENDING REQUEST DELETED

VCI_Dispatch
(response of VCI_Logout
request)

ELB_TECH_PENDING_REQUEST_
DELETED

PENDING REQUEST DELETED

VCI_Disconnect ELB_TECH_PENDING_REQUEST_
DELETED

PENDING REQUEST DELETED

Table 3.7 - Submit Callback

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 83
4 VALUES API Usage Examples

4.1 Overview

This section gives a collection of code fragments that describe the usage of the VALUES API Call
Interface entry points. The programming example consists of code fragments and explanatory text.
The code fragments include calls to the VALUES API, parameter specification, memory allocation, and
examples of application callbacks.
The section is split into subsections outlining the path from initiation of a session, logging into
Exchange applications, end user application requests/responses including a dispatch loop, logging
out of Exchange applications and termination of a session.
The code fragments in this section are intended to demonstrate how certain tasks that are involved
with VALUES programming can be implemented in an end user application. They do not make up a
complete example program. It is not recommended to use them as a template for VALUES-based
Front End applications without adaptions.
The examples assume use of the Sun Solaris platform.

4.2 Initiating a VALUES Connection

The VCI_Connect entry point has to be used to connect the end user application to VALUES. After a
successful VCI_Connect, the end user application can subscribe to data streams and receive broad-
casts. It can also login to Exchange services and then send application requests and receive
responses.
The following list describes how the end user application can allocate and de-allocate memory when
using VCI_Connect:

create connection handler

allocate memory for request data

allocate memory for context data

call VCI_Connect (synchronous)

depending on VCI_Connect’s techComplCode

if ELB_TECH_OK (connected)

de-allocate request data’s memory

else (connect failed)

de-allocate request data’s memory

de-allocate context data’s memory

delete connection handler

wait to be informed about state changes using the connection callback

depending on connection callback’s techComplCode:

if ELB_TECH_TECHSRVC_NOT_AVAILABLE (disconnected)

de-allocate context data’s memory

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 84
delete connection handler

no action for all other completion codes

call VCI_Disconnect (synchronous)

if VCI_Disconnect’s completion code neither ELB_TECH_INVALID_PARAMETER nor
ELB_TECH_NOT_CONNECTED (disconnected)

de-allocate context data’s memory

delete connection handler

Code example for VCI_Connect:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <poll.h> // The library is available on the SUN platform.

// The poll function is here used to poll
// the VMQ (VALUES Message Queue).

// VALUES specific include files
#include "Values.h" // This file declares all types and functions

// of the VCI (VALUES Call Interface).
#include "elbcodetech.h" // This file declares the technical completion codes

// Eurex include files
#include "XEUR_elbcode.h" // This file declares the functional completion codes
#include "DRIV_data_types.hxx" // This file contains constants that specify sizes

// and valid values of data fields.
#include "DRIV_app_rid.h" // The file contains constant application request IDs.
#include "DRIV_login.h" // This file contains a structure definition of Eurex

// authorization data.
#include "EntSLegOrdr.hxx" // Include the application request structure definitions

// needed in the Enter Order submission below.

// Xetra include files
#include "app_rid.h"
#include "xbrdcast.h"
#include "subjectXetra.h"
#include "xetra_login.h"
#include "vld_val.h"

// global structs and variables
// most of them are used to allow communication of callback functions with the main
// program, or to make sure variables that have to be accessible in both callbacks
// and main program are in scope in both environments.
// Real-life applications should use custom context data structs and malloc()’d
// memory to handle this.
char myContextData [100]; // The connectCallback receives a pointer to

// myContextData in callbackCntextData
// from VALUES and needs to access this data.
// The data has to be valid until the session
// is terminated

LoginReqDataT* LoginData; // login request data block
SubmitReqDataT* SubmitData; // submit request data block

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 85
optEntSLegOrdrRequestT my_appl_request_struct;
// The responseCallback
// receives a pointer appReq =
// &my_appl_request_struct in order to
// identify the request that triggered the response.
// Therefore, my_appl_request_struct
// must be stored, for example, by declaring it as
// a global variable. The data has to be valid until
// the response is handled.

int callbackLoginId; // receives the loginID within the loginCallback function
int subsId; // broadcast subscription ID

#define XERVICE_YET_UNKNOWN (–1)
int xetraDbApplId = XERVICE_YET_UNKNOWN; // Xetra Transaction Xervice Application Id

// to be stored by the Connect callback
int eurexDbApplId = XERVICE_YET_UNKNOWN; // Eurex Transaction Xervice Application Id

// to be stored by the Connect callback

int main (int argc, char** argv)
{

// Local variables
int fd; // fd is the file descriptor of the VMQ.
char prodMode; // Application can use prodMode to inform

// the user about the production mode.

// Define variables in VCI-format:
ReqCntrlT reqControl1; // request control records,
ReqCntrlT reqControl2; // one for each user
CnctReqDataT* cnctreqData; // connection request data block
SubmitReqDataT* submitreqData; // submit request data block
DiscnctReqDataT* discnctreqData; // disconnect request data block
CnctRespDataT cnctrespData; // connection response data block
StatusDataT statusData; // VCI function completion status record
AppCntxtDataT* callbackContextData; // App. Callback context data block record
DRIVLoginAuthorizationDataT* DRIV_AuthData; // Authorization structure for Eurex login
XetraLoginAuthorizationDataT* xetraAuthData; // Authorization structure for Xetra login

strcpy(reqControl1.VCIver, CVN_012); // Set VALUES version for compatibility checking;

// allocate memory for cnctreqData (this memory can be free()d after
// returning from VCI_Connect)
cnctreqData = (CnctReqDataT*) malloc(sizeof(CnctReqDataT));

// allocate context data to be used througout the VALUES session
callbackContextData = (AppCntxtDataT*) malloc(sizeof(AppCntxtDataT));

// fill the fields of the cnctreqData-structure
// the userId and password should come from a user or a file and not be hardcoded
strcpy(cnctreqData->userID, "myuser"); // FE operating system userID for VALUES or

// DB-application
strcpy(cnctreqData->password, "mypassword"); // FE operating system password for userID

// fill the fields of the callbackContextData-structure
// This example uses no context data
callbackContextData->custBlockSize = 0;
callbackContextData->custData = NULL;

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 86
// Call VCI_Connect to connect the application to VALUES.
// This is needed to perform a login to the Back End systems.
VCI_Connect(&reqControl1,

cnctreqData,
 connectCallback,

 callbackContextData,
 &cnctrespData,
 &statusData

);

// Assess whether or not the call succeeded.
ret_status_handling(&statusData);

//
// We have return-data received from VCI_Connect.
// Now save response-data for use in later VALUES processing.
//
// The Production Mode is stored.
prodMode = cnctrespData.prodMode;
// The file descriptor to the VMQ is stored.
fd = atoi(cnctrespData.VMQname);
// The connection ID is stored to identify the session in
// all future interface calls.
reqControl1.connectionID = cnctrespData.connectionID;

// In the function below we poll the VMQ and call VCI_Dispatch upon event.
// This call is performed to receive the asynchronously sent data
// about the availability of Xervices
poll_and_dispatch (&reqControl1, fd);

// Continue here with application specific processing
}

4.3 Application Dispatch upon Event Notification

The VCI_Dispatch entry point has to be used by the end user application to receive responses, broad-
casts and exceptions. VCI_Dispatch will read response data from the VMQ and pass it on to the appro-
priate application response callback.

Code example for polling the VMQ and calling VCI_Dispatch:

void poll_and_dispatch (ReqCntrlT *reqControl, // request control record
int fd // file descriptor of VMQ
)

{
StatusDataT statusData; // VCI function completion status record
struct pollfd pfd; // This variable is used to store the polling-output of the VMQ.

// Poll the VMQ.
// It is important to NOT read from the VMQ.
// The actual read is performed by VCI_Dispatch.

pfd.fd = fd;
pfd.events = 0;
pfd.events = pfd.events | POLLIN;

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 87
pfd.events = pfd.events | POLLRDNORM;
pfd.events = pfd.events | POLLRDBAND;
pfd.events = pfd.events | POLLPRI;
pfd.events = pfd.events | POLLERR;

if (poll(&pfd, 1, -1) < 0) // Blocks until VMQ event occurs.
// Use select() with other platforms.

{
printf("\n Poll failed");
break;

}

// If a message is available, then call VCI_Dispatch.
if ((pfd.revents & POLLERR) != 1)
{

// Call VCI_Dispatch to read the response data and call VCI_Dispatch upon event.
VCI_Dispatch(reqControl,

&statusData
);

// Assess whether or not the call succeeded.
ret_status_handling(&statusData);

}
else
{

printf("\n Error on asynchronous channel");
}

return;
}

4.4 Receiving Connection Events

The following code fragment gives an example on how a callback can be implemented in the end user
application to perform asynchronous processing of connection events.

Code example for a connection callback:

void connectCallback (ReqCntrlT *reqControl,
CallBkAppDataT*appData,
AppCntxtDataT*callBackCntxtData,
StatusDataT *statusDataGlobal
)

{
//used to decode “Xervice Available” and /”Xervice not available” - messages
XerviceInfoT* pxinfo;

printf("\n** \n");
printf("\tConnection Callback \n");
printf("** \n");

switch(statusDataGlobal->techComplCode)
{

// This function does not handle all completion codes that may occur..
case ELB_TECH_OK:

printf("Disconnection request Successfully Processed\n");

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 88
break;
case ELB_TECH_REQ_UNSUCCESSFUL:

// In this exception case the application must determine,
// based on the detailed context
// (exception detail, request data, trading phase etc.) whether the request
// must be resubmitted or not
printf("\n%s\n", statusDataGlobal->techComplText);
// The functional completion code provides detailed information:
printf("%s\n", statusDataGlobal->complText);
break;

case ELB_TECH_LOGGED_OUT:
// the application has logged out of the Xervice.
// Usually, this requires no action by the
// connect callback, since the corresponding login callback gets invoked as well.
break;

case ELB_TECH_XERVICE_AVAILABLE:
// Extract the Xervice Id numbers of Xervices we are interested in
// To use multi-exchange capability, an application would store any
// Xervice Id that comes with a Xervice Class it is ready to handle,
// as well as additional information from XerviceInfoT. The example
// code does not use multi-exchange, but pre-defined exchanges.
pxinfo = (XerviceInfoT*) appData->appRespData;
// We are specifically interested in the dbApplID of the Transaction Xervice offered
// by Xetra Frankfurt (MIC is “XETR”)
if (pxinfo->applClass == XETRA_TXN_XCLASS &&

memcmp(pxinfo->exchApplId, “X” EXCH_ID_COD_XETRA, 4) == 0)
{

xetraDbApplId = reqControl->dbApplID;
break;

}
// similar for Eurex
if (pxinfo->applClass == EUREX_TXN_XCLASS &&

memcmp(pxinfo->exchApplId, EXCH_APPL_ID_EUREX, 4) == 0)
{

eurexDbApplId = reqControl->dbApplID;
}
break;

case ELB_TECH_XERVICE_NOT_AVAILABLE:
// on application startup, this event is sent for each Xervice that is configured
// on the MISS, but not currently available. Thus, we can collect XerviceInfo
// from here as well.
pxinfo = (XerviceInfoT*) appData->appRespData;
// We are specifically interested in the dbApplID of the Transaction Xervice offered
// by Xetra Frankfurt (MIC is “XETR”)
if (pxinfo->applClass == XETRA_TXN_XCLASS &&

memcmp(pxinfo->exchApplId, “X” EXCH_ID_COD_XETRA, 4) == 0)
{

xetraDbApplId = reqControl->dbApplID;
break;

}
// similar for Eurex
if (pxinfo->applClass == EUREX_TXN_XCLASS &&

 memcmp(pxinfo->exchApplId, EXCH_APPL_ID_EUREX, 4) == 0)
{

eurexDbApplId = reqControl->dbApplID;
}
break;
// The application can wait for the exchange to become available

case ELB_TECH_INTERNAL_ERROR:

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 89
// The application should disconnect and try to restart. This error is mostly caused by
// MISS/WS configuration or setup problems.

case ELB_TECH_TECHSRVC_NOT_AVAILABLE:
// The application will be disconnected from VALUES at this point.
// It may re-connect when the
// technical services have been restarted (by the system operator if needed)
printf("\n%s\n", statusDataGlobal->techComplText);
break;

default:
printf("\nUnknown Error! Connection Id: %d\n", reqControl->connectionID);
if (callBackCntxtData)
{

printf("callBackCntxtData.custData = %s\n", (char*)callBackCntxtData->custData);
}
printf("Application Version = %d\n", appData->applVersion);
break;

}
return;

}

4.5 Logging on to Exchange Services

The VCI_Login entry point has to be used to login to Exchange services. Before sending any appli-
cation request, the user must get authorization from the Exchange service. For Xervices that
implement the Broadcast Extension (see section 2.5.2), authorization is also required for broadcast
subscription. Multiple users can login to an Exchange services using the same VALUES session.
The following list describes how the end user application can allocate and de-allocate memory when
using the VCI_Login and VCI_Logout:

create login handler

allocate memory for request data

allocate memory for context data

mark login handler as “pending”

call VCI_Login (asynchronous)

if VCI_Login’s techComplCode not ELB_TECH_OK (login failed)

de-allocate context data’s memory

de-allocate request data’s memory

delete login handler

wait to be informed about state changes using the login callback

depending on login callback’s techComplCode

if ELB_TECH_LOGGED_IN (logged in)

mark login handler as “logged in”

de-allocate request data’s memory

if either ELB_TECH_REQ_UNSUCCESSFUL or ELB_TECH_INTERNAL_ERROR
(error while processing login request)

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 90
de-allocate context data’s memory

de-allocate request data’s memory

delete login handler

if ELB_TECH_NONTRANSPARENT_FAILOVER

no action

if either ELB_TECH_LOGGED_OUT or ELB_TECH_TECHSRVC_NOT_AVAILABLE
(logged out)

de-allocate context data’s memory

delete login handler

if ELB_TECH_PENDING_REQUEST_DELETED

if login handler is “pending” (error while processing login request)

de-allocate context data’s memory

de-allocate request data’s memory

delete login handler

else (error while processing logout request)

no action

if ELB_TECH_XERVICE_NOT_AVAILABLE

if login handler “logged in" (logged out)

de-allocate context data’s memory

delete login handler

else (error while processing login request)

de-allocate request data’s memory

de-allocate context data’s memory

delete login handler

call VCI_Logout (asynchronous)

no action

Code example for VCI__Login:

// Duplicate request control record for use with second user.
reqControl2 = reqControl1;

// Allocate memory for LoginData
//(this memory has to be deallocated in the login/out callback function).
LoginData = (LoginReqDataT*) malloc(sizeof(LoginReqDataT));

// Fill the fields of the reqData-structure for the first user.
// Assign application version as defined in DRIV_data_types.hxx.
LoginData->applVersion = XEUR_AVN_090;

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 91
// The userId and password should come from a user or a file and not be
// hardcoded as they are here.
memcpy(LoginData->userID, "MEMBRTRD001", LOGIN_MAX_USERID);
DRIV_AuthData = (DRIVLoginAuthorizationDataT*) malloc(sizeof(DRIVLoginAuthorizationDataT));
memcpy(DRIV_AuthData->password, "MYPASSWD", DRIV_LOGIN_MAX_PWDID); // password for userID

// Here the application ID assigned by the exchange should be used.
memcpy(DRIV_AuthData->applicationId, "EUREXXXXXXXXXXXX", DRIV_LOGIN_APPLICATION_ID);
LoginData->authorizationData = (void*) DRIV_AuthData;
LoginData->authorizationDataLength = sizeof(DRIVLoginAuthorizationDataT);

strcpy(reqControl1.appDescr, "Eurex"); // This is an optional description.
// check if the Xervice was announced as available: (this happens inside the connectCallback)
assert(eurexDbApplId != XERVICE_YET_UNKNOWN);
reqControl1.dbApplID = eurexDbApplId; // Logon will be done for Eurex.

// Call VCI_Login for the first user. This gives the user the authorization
// from the exchange Back End to submit application requests.
VCI_Login(&reqControl1,

LoginData,
loginCallback,
NULL,
NULL,
&statusData
);

// Assess whether or not the call succeeded.
ret_status_handling(&statusData);

// In this function we poll the VMQ and call VCI_Dispatch upon event.
poll_and_dispatch (&reqControl1, fd);

// The loginID has been received in loginCallback.
reqControl1.loginID = callbackLoginId;

// Allocate memory for LoginData
// (this memory has to be deallocated in the login/out callback function).
LoginData = (LoginReqDataT*) malloc(sizeof(LoginReqDataT));
// Fill the fields of the reqData-structure for the second user.
// The userId and password should come from a user or a file and not be
// hardcoded as they are here.
memcpy(LoginData->userID, "MEMBRTRD002", LOGIN_MAX_USERID);
xetraAuthData = (XetraLoginAuthorizationDataT*) malloc(sizeof(XetraLoginAuthorizationDataT));
memcpy(xetraAuthData->password, "MYPASSWD", XETRA_LOGIN_MAX_PWDID); // password for userID
LoginData->authorizationData = (void*) xetraAuthData;
LoginData->authorizationDataLength = sizeof(XetraLoginAuthorizationDataT);

strcpy(reqControl2.appDescr, "Xetra"); // This is an optional description.
// check if the Xervice was announced as available:
assert(xetraDbApplId != XERVICE_YET_UNKNOWN);
reqControl2.dbApplID = xetraDbApplId; // Logon will be done for Xetra.

// Call VCI_Login for the second user.
VCI_Login(&reqControl2,

LoginData,
loginCallback,
NULL,
NULL,

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 92
&statusData
);

// Assess whether or not the call succeeded.
ret_status_handling(&statusData);

// In this function we poll the VMQ and call VCI_Dispatch upon event.
poll_and_dispatch (&reqControl2, fd);

// The loginID has been received in loginCallback.
reqControl2.loginID = callbackLoginId;

4.6 Receiving Login Responses

The following code fragment shows how callbacks are implemented in the end user application to
perform asynchronous processing in response to end user login requests.

Code example for a login callback:

extern LoginReqDataT* LoginData; // login request data block

void loginCallback (ReqCntrlT *reqControl,
CallBkAppDataT *appData,
AppCntxtDataT *callBackCntxtData,
StatusDataT *statusDataGlobal
)

{
// cast the void pointer to it’s real type
LoginRespDataT *respData = (LoginRespDataT*) appData->appRespData;

printf("\n** \n");
printf("\tLogin/out Callback \n");
printf("** \n");

switch(statusDataGlobal->techComplCode)
{

// Here are only some of all the completion codes in elbcodetech.h handled.
case ELB_TECH_LOGGED_IN:

printf("Logged In");
printf("\n LOGIN ID: %ld\n", respData->loginID);
// save the loginID just received into the global variable
callbackLoginId = respData->loginID;
break;

case ELB_TECH_LOGGED_OUT:
free(LoginData);
printf("Logged Out");
break;

case ELB_TECH_REQ_UNSUCCESSFUL:
printf("\n%s\n", statusDataGlobal->techComplText);
// The functional completion code provides detailed information:
printf("%s\n", statusDataGlobal->complText);
break;

case ELB_TECH_XERVICE_AVAILABLE:
case ELB_TECH_XERVICE_NOT_AVAILABLE:
case ELB_TECH_TECHSRVC_NOT_AVAILABLE:

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 93
case ELB_TECH_NONTRANSPARENT_FAILOVER:
printf("\n%s\n", statusDataGlobal->techComplText);
break;

default:
printf("\n%s\n", statusDataGlobal->techComplText);
printf("Connection Id: %d\n", reqControl->connectionID);
if (callBackCntxtData)
{

printf("callBackCntxtData.custData = %s\n", (char*)callBackCntxtData->custData);
}
break;

}
return;

}

4.7 Submitting Application Requests

The VCI_Submit Call Interface entry point has to be used by the end user application to send
processing requests to the exchange application. The user has to specify a request code, request
data and an application callback function.
The following list describes how the end user application can allocate and de-allocate memory when
using the VCI_Submit:

create submission handler

allocate memory for context data

allocate memory for request data

call VCI_Submit (asynchronous)

if VCI_Submit’s techComplCode not ELB_TECH_OK (submit failed)

de-allocate context data’s memory

de-allocate request data’s memory

delete submission handler

wait to be informed about state changes (response) using the submission callback

depending on submission callback’s techComplCode

for all completion codes

de-allocate context data’s memory

de-allocate request data’s memory

delete submission handler

Code example for VCI_Submit:

// The filling of the application request structure should be done at this point.
// In general these fields are not hardcoded, but entered by a user.
// This is an example of an Eurex stock option order entry.
memcpy(my_appl_request_struct.header.exchApplId, EXCH_APPL_ID_EUREX, EXCH_APPL_ID_LEN);
memcpy(my_appl_request_struct.header.prodLine, PROD_LINE_OPTION, PROD_LINE_LEN);

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 94
memset(my_appl_request_struct.header.membExchIdCodOboMS, EXCH_CONST_SPACE,
 MEMB_EXCH_ID_COD_OBO_MS_LEN);

my_appl_request_struct.extension.acctTypCod = ACCT_TYP_COD_AGENT;
my_appl_request_struct.extension.acctTypNo = ACCT_TYP_NO_ONE;
memcpy(my_appl_request_struct.extension.txtGrp.cust, "My Customer ", CUST_LEN);
memcpy(my_appl_request_struct.extension.txtGrp.userOrdrNum, "123456789012",

USER_ORDR_NUM_LEN);
memcpy(my_appl_request_struct.extension.txtGrp.text, "FreeFormText", TEXT_LEN);
memcpy(my_appl_request_struct.extension.membClgIdCod, "CLGMB", MEMB_CLG_ID_COD_LEN);
my_appl_request_struct.extension.prcRsblChkInd = EXCH_CONST_NO;

my_appl_request_struct.basic.buyCod = EXCH_CONST_BUY;
memcpy(my_appl_request_struct.basic.optCntrIdGrp.prodId, "ODAX", PROD_ID_LEN);
my_appl_request_struct.basic.optCntrIdGrp.cntrClasCod = CNTR_CLAS_COD_CALL;
memcpy(my_appl_request_struct.basic.optCntrIdGrp.cntrExpMthDat, "06", CNTR_EXP_MTH_DAT_LEN);
memcpy(my_appl_request_struct.basic.optCntrIdGrp.cntrExpYrDat, "2006", CNTR_EXP_YR_DAT_LEN);
memcpy(my_appl_request_struct.basic.optCntrIdGrp.cntrExerPrc, "0004550", CNTR_EXER_PRC_LEN);
my_appl_request_struct.basic.optCntrIdGrp.cntrVersNo = CNTR_VERS_NO_ZERO;
memset(my_appl_request_struct.basic.trdrIdGrp.partSubGrpCod, EXCH_CONST_SPACE,

 PART_SUB_GRP_COD_LEN);
memset(my_appl_request_struct.basic.trdrIdGrp.partNo, EXCH_CONST_SPACE, PART_NO_LEN);
memcpy(my_appl_request_struct.basic.ordrQty, "+000000000177", DRIV_ORDR_QTY_LEN);
memcpy(my_appl_request_struct.basic.ordrExePrc, "+0000000002250", DRIV_ORDR_EXE_PRC_LEN);
my_appl_request_struct.basic.ordrResCod = EXCH_CONST_SPACE;
memcpy(my_appl_request_struct.basic.ordrExpDat, "20060630", ORDR_EXP_DAT_LEN);
my_appl_request_struct.basic.opnClsCod = OPN_CLS_COD_OPEN;

// Set the type of the request. The definition is in file "DRIV_app_rid.h".
reqControl1.reqID = DRIV_ENTER_SINGLE_LEG_ORDER_RID;

// allocate memory for callbackContextData
callbackContextData = (AppCntxtDataT*) malloc(sizeof(AppCntxtDataT));

// With SubmitData (global) we actually pass the application request data
// to the VALUES Call Interface.
SubmitData.appReq = &my_appl_request_struct;

// This pointer is passed back to the
// application-response-callback-function and
// may be used there to identify the request that
// caused the response callback.

SubmitData.appReqBlockSize = sizeof(my_appl_request_struct);

// Fill some custom data.
strcpy(myContextData, "this is a context data string"); // Store context data to be accessed in

 // the response callback.

// customize callbackContextData
callbackContextData->custData = myContextData; // Pass pointer to context data to

// VALUES. This pointer is passed back to the
// application in the application callback.

callbackContextData->custBlockSize = sizeof(myContextData);

// Call VCI_Submit for the first user. This actually sends the processing request
// to the Back End application.
VCI_Submit(&reqControl1,

&SubmitData,
responseCallback,
callbackContextData,

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 95
&statusData
);

// Assess whether or not the call succeeded.
ret_status_handling(&statusData);

// In this function we poll the VMQ and call VCI_Dispatch upon event.
poll_and_dispatch (&reqControl1, fd);

4.8 Receiving Application Responses

The following code fragment shows how callbacks are implemented in the end user application to
perform asynchronous processing in response to end user application requests.

Code example for an application request callback:

void responseCallback (ReqCntrlT *reqControl,
CallBkAppDataT *appData,
AppCntxtDataT *appCntxtData,
StatusDataT *statusDataGlobal
)

{
int responseSize;
optEntSLegOrdrRequestT *my_appl_req_struct;
optEntSLegOrdrResponseT *responseData;

printf("\n** \n");
printf("\tResponse Callback \n");
printf("** \n");

switch(statusDataGlobal->techComplCode)
{

// This function does not handle all completion codes that may occur..
case ELB_TECH_OK:

// The reqControl structure contains the reqID of the request that generates
// this callback. The reqID may be retrieved at this point to
// determine further processing.

// The structure appReqData of the appData parameter
// contains the request that was sent by the application with the
// VCI_Submit call.
// This information can be retrieved as follows:
my_appl_req_struct = (optEntSLegOrdrRequestT*) appData->appReqData;

// The structure appData contains the application response data and the
// size of response data:
responseSize = appData->appRespBlockSize;
responseData = (optEntSLegOrdrResponseT*) appData->appRespData;

// The structure appCntxtData contains the application context data, which can
// be retrieved similar to the appReqData or the appRespData.

///
// For verification purposes send out the data from appCntxtDataT

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 96
// and some request and response data from appData.
///
printf("appCntxtDataT.custData = %s\n", (char*)appCntxtData->custData);
printf("application_request_structure->basic.optCntrIdGrp.prodId = %*.*s\n",

PROD_ID_LEN, PROD_ID_LEN,
my_appl_req_struct->basic.optCntrIdGrp.prodId);

printf("responseData->basic.ordrNo = %*.*s\n",
DRIV_ORDR_NO_LEN, DRIV_ORDR_NO_LEN,
responseData->basic.ordrNo);

break;
case ELB_TECH_REQ_UNSUCCESSFUL:

// In this exception case the application must determine, based on the detailed context
// (exception decode, application request, trading phase etc.) whether the request
// must be resubmitted or not
printf("\n%s\n", statusDataGlobal->techComplText);
// The functional completion code provides detailed information:
printf("%s\n", statusDataGlobal->complText);
break;

case ELB_TECH_PENDING_REQUEST_DELETED:
// This exception occurs for example if an application logs out with pending
// application requests
printf("\n%s\n", statusDataGlobal->techComplText);
break;

default:
printf("\n%s\n", statusDataGlobal->techComplText);
printf("Connection Id: %d\n", reqControl->connectionID);
break;

}

// deallocation of appReqData - this assumes that the data has been malloc()ed before it was
// passed to VCI_Submit().
// Of course, if you used a struct that is local to a function, it must not be free()ed here -
// however, the data
// must be kept in scope and unchanged until the response callback has been received
// (often, it's more convenient to malloc).
free(appData->appReqData);

}

4.9 Subscribing to a Data Stream

The VCI_Subscribe call has to be used by the end user application to subscribe to data streams.
Before subscribing, a session must have been established. For Xervices that implement the Broadcast
Extension (see section 2.5.2), a valid login is required as well. The user must specify the desired data
stream and a callback function.
The following list describes how the end user application can allocate and de-allocate memory when
using the VCI_Subscribe and VCI_Unsubscribe:

create subscription handler

allocate memory for request data

allocate memory for context data

mark subscription handler as “pending”

call VCI_Subscribe (asynchronous)

if VCI_Subscribe’s techComplCode not ELB_TECH_OK (subscribe failed)

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 97
de-allocate context data’s memory

de-allocate request data’s memory

delete subscription handler

wait to be informed about state changes (broadcast) using the subscription callback

depending on subscription callback’s completion code

if ELB_TECH_OK (broadcast)

no action

if ELB_TECH_SUBSCRIBED (subscribed)

mark subscription handler as “subscribed”

if either ELB_TECH_SUBSCRIPTION_DELETED, ELB_TECH_INTERNAL_ERROR, or
ELB_TECH_UNSUBSCRIBED (unsubscribed)

de-allocate context data’s memory

de-allocate request data’s memory

delete subscription handler

if ELB_TECH_PENDING_REQUEST_DELETED

if subscription handler “pending” (error while processing subscription request)

de-allocate context data’s memory

de-allocate request data’s memory

delete subscription handler

else (error while processing unsubscription request)

no action

call VCI_Unsubscribe (asynchronous)

no action

Code example for VCI_Subscribe

void subscribe_function (void)
{

// fill the reqControl parameters
strcpy(reqControl.appDescr, "Xetra"); // This is an optional description.
assert(xetraDbApplId != XERVICE_YET_UNKNOWN); // must be announced by connect callback by now
reqControl.dbApplID = xetraDbApplId; // Subscribe will be done for Xetra.
strcpy(reqControl.VCIver, CVN_012); // Set VALUES version for compatibility checking;

// VCI_VERSION is a VALUES constant.

// At this point, the connection ID obtained as a returned parameter
// from VCI_Connect is used to identify the session.
reqControl.connectionID = myConnectionID;

// For a Xervice with Broadcast Extension, it would be required to set the loginID field
// to a valid ID that has been received via login callback, not just zero like here

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 98
reqControl.loginId = 0;

// Allocate memory for reqData (this memory has to be deallocated after calling VCI_Unsubscribe).
reqData = (SubsReqDataT*) malloc(sizeof(SubsReqDataT));

// Fill the fields of the reqData-structure.
// These fields should not be hardcoded, but entered by a user, or retrieved from a file.
reqData->streamType = XETRA_PUBLIC_UNRELIABLE_MARKET_STREAM_TYPE;

// Assign application version as defined in vld_val.h.
reqData->applVersion = XETR_AVN_071;
reqData->subjectLength = sizeof(XetraIsinSubjectT);
reqData->subject = &subscrSubject;

// For subscription to Gap Notifications, this would read:
// reqData->applVersion = SUBJECT_GAPINFO_VERSION;
// reqData->subjectLength = strlen(SUBJECT_GAPINFO);
// reqData->subject = SUBJECT_GAPINFO;

reqData->authorizationData = (void*) NULL;
reqData->authorizationDataLength = 0;

// The filling of the application request structure should be done at this point.
// In general these fields are not hardcoded, but entered by a user.
memcpy(subscrSubject, "DE0001234567", ISIN_LEN);

statusDataGlobal = (StatusDataT*) malloc(sizeof(StatusDataT));

// Call VCI_Subscribe to actually subscribe to the data stream.
VCI_Subscribe(&reqControl,

reqData,
broadcastCallback,
NULL,
NULL,
statusDataGlobal

);

// Assess whether or not the call succeeded
ret_status_handling(statusDataGlobal);

}

4.10 Receiving Subscription Data

The following code fragment shows how callbacks are implemented in the end user application to
perform asynchronous processing of received broadcasts.

Code example for a subscription response callback:

void broadcastCallback (ReqCntrlT *reqData,
CallBkAppDataT *appData,
AppCntxtDataT *appCntxtData,
StatusDataT *statusDataGlobal
)

{
int responseSize;
XetraIsinSubjectT* responseData;

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 99
int subsID;

// The structure "brcSubject" of the appData parameter
// contains the subject of this broadcast message
// and the subscription ID.
// This subject is identical to the subject used to subscribe to this stream,
// except that wildcards are replaced by actual values.
// A Gap Notification carries the subject SUBJECT_GAPINFO.

// The structure appData contains a pointer to the application response data and the
// size of the response data.
responseSize = appData->appReqBlockSize;
responseData = (XetraIsinSubjectT*) appData->appRespData;

// Context data may be read at this point
printf("appCntxtData.custData = %s\n", (char*)appCntxtData->custData);

switch(statusDataGlobal->techComplCode)
{

// This function does not handle all completion codes that may occur..
case ELB_TECH_OK:

// at this point, the broadcast data struct may be read and processed
// ...

printf("Successfully Processed\n");
break;

case ELB_TECH_REQ_UNSUCCESSFUL:
// In this exception case the application must determine, based on the detailed context
// (exception decode, subscription request, trading phase etc.) whether the subscription
// request must be resubmitted or not
printf("\n%s\n", statusDataGlobal->techComplText);
// The functional completion code provides detailed information:
printf("%s\n", statusDataGlobal->complText);
break;

case ELB_TECH_SUBSCRIPTION_DELETED:
// The application can try to re-issue the subscription request

case ELB_TECH_INTERNAL_ERROR:
// The application should disconnect and try to restart. If the error persists
// then exception logs should be examined for more information about the problem.

case ELB_TECH_PENDING_REQUEST_DELETED:
// the pending subscription request did not succeed.
break;

case ELB_TECH_UNSUBSCRIBED:
// This indicates a successful unsubscription
printf("\n%s\n", statusDataGlobal->techComplText);
break;

case ELB_TECH_SUBSCRIBED:
// This indicates a successful subscription

// store the subscription ID in the global variable
subsID = ((SubsRespDataT*) appData->appRespData)->subsID;
printf("\n%s\n", statusDataGlobal->techComplText);
break;

default:
printf("\nUnknown Error! Connection Id: %d\n", reqData->connectionID);
if (appCntxtData->custBlockSize > 0)
{

printf("appCntxtData.custData = %s\n", (char*)appCntxtData->custData);
}

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 100
printf("Application Version = %d\n", appData->applVersion);
break;

}
}

4.11 Unsubscribing from a Data Stream

The VCI_Unsubscribe entry point has to be used by the end user application to end the subscription to
a data stream.

Code example for VCI_Unsubscribe:

void unsubscribe_function (void)
{

// define variables in VCI-format
ReqCntrlT reqControl; // request control record
UnsubsReqDataT reqData; // unsubscribe request data block
StatusDataT* statusDataGlobal; // VCI function completion status record

// fill the reqControl parameters
strcpy(reqControl.appDescr, "Xetra"); // This is an optional description.
reqControl.dbApplID = xetraDbApplId; // Unsubscribe will be done for Xetra.
strcpy(reqControl.VCIver, CVN_012); // Set VALUES version for compatibility checking;

// VCI_VERSION is a VALUES constant.

// at this point, the connection ID obtained as a returned parameter
// from VCI_Connect is used to identify the session
reqControl.connectionID = myConnectionID;

// the globally stored subscription ID is needed to unsubscribe.
reqData.subsID = subsId;

statusDataGlobal = (StatusDataT*) malloc(sizeof(StatusDataT));

// call VCI_Unsubscribe
VCI_Unsubscribe(&reqControl,

&reqData,
NULL,
statusDataGlobal
);

// Assess whether or not the call succeeded
ret_status_handling(statusDataGlobal);

}

4.12 Logging off from an Exchange Service

The VCI_Logout entry point has to be used by the end user application to log off from an Exchange
service.

Code example for VCI_Logout:

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 101
// Log out first user from the Back End application.
// The structure reqControl1 of type ReqCntrlT contains login context data of the first user
VCI_Logout(&reqControl1,

NULL,
NULL,
&statusData
);

// Assess whether or not the call succeeded.
ret_status_handling(&statusData);

// In this function we poll the VMQ and call VCI_Dispatch upon event.
poll_and_dispatch (&reqControl1, fd);

// Log out second user.
// The structure reqControl2 contains login context data of the second user
VCI_Logout(&reqControl2,

NULL,
NULL,
&statusData
);

// Assess whether or not the call succeeded.
ret_status_handling(&statusData);

// In this function we poll the VMQ and call VCI_Dispatch upon event.
poll_and_dispatch (&reqControl1, fd);

4.13 Terminating a VALUES Session

The VCI_Disconnect entry point has to be used to disconnect the end user application from VALUES.

Code example for VCI_Disconnect:

// allocate memory for discnctreqData (this memory has to be deallocated after disconnecting)
discnctreqData = (DiscnctReqDataT*) malloc(sizeof(DiscnctReqDataT));

// Call VCI_Disconnect to terminate the VALUES session.
VCI_Disconnect(&reqControl1,

discnctreqData,
&statusData
);

// Assess whether or not the call succeeded.
ret_status_handling(statusData);

// deallocation of connection request data
free(cnctreqData);
free(discnctreqData);

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Usage Examples Page 102
4.14 Auxiliary Functions of an End User Application

This section contains examples of some auxiliary functions as an end user application might contain
them. They are mentioned here to make the example program complete.

void error_handling (StatusDataT* statusDataGlobal)
{

printf("Error: %s\n", statusDataGlobal->complText);
exit(statusDataGlobal->complCode);

}

void warning_handling (StatusDataT* statusDataGlobal)
{

printf("Warning: %s\n", statusDataGlobal->complText);
}

void ret_status_handling (StatusDataT* statusDataGlobal)
{

// Assess whether or not the call succeeded.
switch (statusDataGlobal->complSeverity)
{

case VCI_SUCCESS: // VCI_SUCCESS = Successful completion.
break;

case VCI_FATAL: // VCI_FATAL = Fatal error has occurred.
// The application should perform a shutdown.

fatality_handling(statusDataGlobal);
break;

case VCI_ERROR: // VCI_ERROR = An error has been detected.
// The application has to perform
// error-handling processing depending on which
// completion code has been returned.

error_handling(statusDataGlobal);
break;

case VCI_WARNING: // VCI_WARNING = A minor error occurred. The
// The application may have to perform error-
// handling depending on which completion code
// has been returned.

warning_handling(statusDataGlobal);
break;

} // end switch
return;

}

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Completion Codes (Call Interface) Page 103
5 VALUES API Completion Codes (Call Interface)

The VALUES API Call Interface communicates status information with a completion code data field.
Each entry point generates a number of different completion codes. Some codes are shared among
the entry points.
For a list of VALUES API functional completion codes please refer to the Exchange specific volumes.
Table 5.1 lists for all valid VALUES API technical completion codes the completion text and a
description. To access these completion codes and text decodes, the constant definitions in the
completion code header file should be used. Please refer to section 7 for a list of header files
delivered with the Exchange Service software.

Completion Text
(techComplText) Description

SUCCESSFUL COMPLETION Indicates successful completion status of an entry point.

MAXIMUM NUMBER OF CONNECTIONS
REACHED

The maximum number of VALUES sessions on a
workstation or MISS is reached.

USER IS NOT ALLOWED TO USE THE
EXCHANGE SERVICE OR USER IS NOT
REGISTERED

The user ID specified is not valid.

INVALID PASSWORD The password specified is not valid.

A PARAMETER WAS EITHER INVALID OR
HAD INVALID CHARACTERS

One or more specified parameters are invalid. Please
check the exception log file for details.

INVALID USER OR PASSWORD One or more specified parameters are invalid. Please
check the exception log file for details.

INVALID PARAMETER PASSED One or more specified parameters are invalid. Please
check the exception log file for details.

INTERNAL ERROR OCCURRED A VALUES internal error occurred, please check the
exception log file for details and contact the help desk in
case the problem cannot be solved.

APPLICATION ALREADY CONNECTED A session is already established.

REQUEST NOT SUCCESSFULLY
PROCESSED

An exception has occurred while processing the request.
Please check the Exchange application completion code
for details.

APPLICATION NOT CONNECTED A session must be established first.

PENDING REQUEST DELETED The application disconnected or logged out while requests
where pending. Alternatively, a non-transparent failover
might have occurred, requests must be re-transmitted.

Table 5.1 - VALUES API Completion Codes

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Completion Codes (Call Interface) Page 104
SUBSCRIPTION DELETED The application disconnected while subscriptions where
active. For a Xervice that implements Broadcast Exten-
sions, this error can also occur in case of losing the login
context that the subscription refers to.

MAXIMUM NUMBER OF LOGINS
EXCEEDED

The maximum number of logins per Exchange Service is
exceeded.

EXCHANGE SERVICE NOT AVAILABLE An Exchange Service is not available. Please contact the
operator.

TOO MANY PENDING REQUESTS IN
QUEUE

The limit of pending requests is reached. Wait for
responses before submitting more requests.

USER NOT LOGGED IN User not yet authorized.

TECHNICAL SERVICES NOT AVAILABLE GATE (Technical Services) is unavailable. Please contact
the operator.

USER LOGGED IN SUCCESSFULLY User has been authorized successfully.

USER LOGGED OUT SUCCESSFULLY User logged out from Exchange Service successfully.

STREAM SUBSCRIBED The specified subscription is activated.

STREAM UNSUBSCRIBED The specified subscription is de-activated.

UNMAPPABLE MESSAGE DISCARDED A response was received with no corresponding pending
request. This event may occur during recovery of
workstation or MISS (failover).

NONTRANSPARENT FAILOVER A non-transparent failover to the secondary MISS has
occurred. Requests may have been lost, recovery through
inquiry may be required.

VALUES CALLS ARE NOT REENTRANT A VALUES entry point has been used while another VALUES
call in the same process was still active.

EXCHANGE SERVICE AVAILABLE An Exchange Service has become available.

STREAM NOT SUBSCRIBED The subscription is not active.

Completion Text
(techComplText) Description

Table 5.1 - VALUES API Completion Codes

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 105
6 VALUES API Call Interface Field Descriptions

This is a description of the data fields passed to or retrieved from the VALUES API Call Interface. The
first section gives an overview and provides general information. The second section lists all data
fields of the Call Interface.

6.1 Overview

The VALUES API field description lists all data fields by name and provides a detailed field description.
Field characteristics are detailed and a guideline on how to initialize data fields is given. Valid values
for the individual field as well as a textual description of field level rules are given where applicable.

6.1.1 Field Characteristics

The characteristics of each field are detailed giving the following information.

Type Denotes the data type of the field. Valid data types are the ANSI C types
listed in Table 6.1.

Value/Reference Defines the passing mechanism used for this field, passed by value (Value)
or passed by reference (Reference).

Format Defines the format and size of the data field. The format for types that
have platform dependent sizes is marked as "p/d".

Format constants are defined in data definition header files published with
the VALUES API software. Please refer to section 7 for a list of VALUES API
data definitions header files.

Note: Character values used in application requests are not ’\0’ terminated.

Type Description Valid Values / Range

int An integer, typically reflecting the natural size of
integers on the host machine.

platform dependent (p/d)

char [] Text; in C this is a reference to text stored in an array.
‘Format’ indicates the size of this array.

alphanumeric characters,
no special characters
allowed

char Single byte, capable of holding one character in the
local character set.

platform dependent (p/d)

void* Reference to a data block of unspecified structure. platform dependent (p/d)

Table 6.1 - VALUES API Data Types

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 106
6.1.2 Initialization Guideline

It is recommended to initialize all unused or optional data fields before passing them to the VALUES
API. Table 6.2 gives a guideline on how to initialize the different data types. Unused character fields in
application requests should be explicitly set to "spaces".

6.1.3 Template for the Call Interface Field Descriptions

Name of field

6.2 Call Interface Field Descriptions

6.2.1 appDescr (ReqCntrlT)

Type Initialization

int 0

char [] array filled with spaces

char SPACE

void* NULL

Table 6.2 - Data Field Initialization Guideline

Description Description of the Call Interface Field

Where Used Used Entry points where this field is used

Characteristics Type Value/Reference Format

Valid Values

Description This field is reserved for future use.

Where Used n/a

Characteristics Type Value/Reference Format

char [] Value MAX_APPDSCR

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 107
6.2.2 applClass (XerviceInfoT)

6.2.3 applPrevVersion (CallBkAppDataT)

6.2.4 applVersion (LoginReqDataT, SubsReqDataT, CallBkAppDataT, XerviceIn-
foT)

Valid Values Not Relevant

Description This field specifies the Xervice Class assigned to a Xervice. Please refer to
section 2.9 for a description of the Xervice Class concept.

Where Used In application callbacks

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Defined in exid.h, please refer to section 7 for information on data defini-
tions and header files.

Description This field supplies an AVN that is supported by an Exchange Application in
terms of backwards compatibility. If no backwards compatibiliy is available,
this field contains the same value as applVersion.

Where Used In application callbacks.

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Please refer to the description of this field in the Exchange specific
volumes.

Description This field identifies the version of the application request (AVN).

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 108
6.2.5 appReq (SubmitReqDataT)

6.2.6 appReqBlockSize (CallBkAppDataT, SubmitReqDataT)

Where Used VCI_Subscribe

VCI_Login

In application callbacks

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Please refer to the description of this field in the Exchange specific
volumes.

Description This is a pointer to the application request data structure passed to
VCI_Submit.

Where Used VCI_Submit

Characteristics Type Value/Reference Format

void* Reference p/d

Valid Values Application data according to specific Exchange application.

Description This field specifies the number of bytes of the application request data
block passed to VCI_Submit by the end user application This field is
returned from VALUES in application callbacks.

Where Used VCI_Submit

In application callbacks

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Use actual size of application request structure.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 109
6.2.7 appReqData (CallBkAppDataT)

6.2.8 appRespBlockSize (CallBkAppDataT)

6.2.9 appRespData (CallBkAppDataT)

Description This data structure is returned from VALUES in application callbacks at
receipt of responses. It contains the application request corresponding to
the response.

Where Used In application callbacks

Characteristics Type Value/Reference Format

void* Reference p/d

Valid Values Application data according to specific Exchange application.

Description This field specifies the number of bytes of the application response data
block populated by VALUES and passed to the end user application through
application callbacks.

Where Used In application callbacks

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Use actual size of application response structure.

Description This is a pointer to the application response data structure populated by
VALUES and returned to the end user application through application
callbacks.

Where Used In application callbacks

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 110
6.2.10 authorizationData (LoginReqDataT, SubsReqDataT)

6.2.11 authorizationDataLength (LoginReqDataT, SubsReqDataT)

Characteristics Type Value/Reference Format

void* Reference p/d

Valid Values Application data according to specific Exchange application.

Description This is a pointer to the Exchange application authorization data and used
for passwords and additional Exchange application specific data.

Where Used VCI_Login

VCI_Subscribe (for future use)

Characteristics Type Value/Reference Format

void* Reference p/d

Valid Values Application authorization data according to specific Exchange application.

Description This field specifies the length of the field authorizationData.

Where Used VCI_Login

VCI_Subscribe (for future use)

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Size of the field authorizationData.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 111
6.2.12 brcSubject (CallBkAppDataT)

6.2.13 closure (LoginReqDataT)

6.2.14 complCode (statusDataT)

Description This field defines the subject data structure. The subject data structure is
populated by the end user application and passed to VALUES as a byte
block. Subject structures are defined with each subscription application
request in the Exchange application specific volumes.

Where Used VCI_Subscribe

In application callbacks

Characteristics Type Value/Reference Format

void* Reference n/a

Valid Values For definition of subject structures please refer to the Exchange application
specific volumes. Subject structures are defined in the description of each
subscription application request.

Description This field is reserved for future use.

Where Used n/a

Characteristics Type Value/Reference Format

char Value 1

Valid Values Not Relevant

Description This field contains a code that describes the completion status of an appli-
cation request. This completion status is generated by the Exchange
service and passed to the application callback by VALUES.

Where Used All Call Interface entry points

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 112
6.2.15 complSeverity (statusDataT)

6.2.16 complText (statusDataT)

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Value varies according to the given application request. For a list of appli-
cation request completion codes and corresponding decodes please refer
to the Exchange application specific volumes.

Description This field defines the severity of the completion code (complCode). Value
varies according to the circumstances in which the processing occurred.

Where Used All Call Interface entry points

Characteristics Type Value/Reference Format

int Value p/d

Valid Values VCI_SUCCESS

VCI_WARNING

VCI_ERROR

VCI_FATAL

Description This field is the decode of a specific completion code. This is a textual
description of the completion code

Where Used All Call Interface entry points

Characteristics Type Value/Reference Format

char [] Value ELB_MAX_STRING

Valid Values Value varies according to the given application request. For a list of appli-
cation request codes and decodes please refer to the Exchange application
specific volumes.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 113
6.2.17 connectionID (ReqCntrlT, CnctRespDataT)

6.2.18 custBlockSize (AppCntxtDataT)

Description This field identifies a session which is unique per application using VALUES.
The field is populated by VALUES in the response message of the
VCI_Connect entry point. For all other entry points the field must be
populated by the application in the request control block with the
connection ID obtained through VCI_Connect.

Where Used All Call Interface entry points

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Valid connection ID obtained through VCI_Connect.

Description This field specifies the number of bytes of the custom data block (custData
field) passed to VALUES by the end user application and returned through
the application callback.

Where Used VCI_Connect

VCI_Login

VCI_Submit

VCI_Subscribe

In application callbacks

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Numeric

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 114
6.2.19 custData (AppCntxtDataT)

6.2.20 dbApplID (ReqCntrlT)

Description This field specifies a pointer to the custom data block passed to VALUES
by the end user application and returned through the application callback.

Where Used VCI_Connect

VCI_Login

VCI_Submit

VCI_Subscribe

In application callbacks

Characteristics Type Value/Reference Format

void* Reference p/d

Valid Values User specific context data.

Description This field uniquely identifies Exchange Services to login or logout from, or
to submit/subscribe to. This field is filled by the Connection callback and
the end user application.

Where Used VCI_Login

VCI_Logout

VCI_Submit

VCI_Subscribe

in application callbacks

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Any integer received by the application callback for Connect events (see
section 3.3.3 for details).

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 115
6.2.21 exchApplId (XerviceInfoT)

6.2.22 exchDscrName (XerviceInfoT)

6.2.23 funcResult (LoginRespDataT)

Description This field contains the Market Identification Code (MIC) that uniquely
identifies a certain Exchange, e.g. “XEUR” for Eurex or “XVIE” for Xetra
Vienna.

Where Used in application callbacks

Characteristics Type Value/Reference Format

char[] Value MAX_APPLID

Valid Values Valid MIC codes. Please note that this is not a ’\0’ terminated field.

Description This field contains a readable free text identifier for an Exchange. It can be
used to display a menu to the end user.

Where Used in application callbacks

Characteristics Type Value/Reference Format

char[] Reference MAX_DSCRNAME

Valid Values Free text. This field contains a ’\0’ terminated C string.

Description This field is reserved for future use.

Where Used n/a

Characteristics Type Value/Reference Format

int Value n/a

Valid Values Not Relevant

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 116
6.2.24 loginID (ReqCntrlT, LoginRespDataT)

6.2.25 password (CnctReqDataT)

Description This field contains an unique identifier for each successful login. The loginID
is unique per Exchange Service. The field is populated by VALUES and
returned to the end user application with the response of a successful login
request. The loginID obtained must be passed to VALUES by the end user
application for each subsequent call to VCI_Submit or VCI_Logout. This
also appplies to VCI_Subscribe if Broadcast Extension is implemented by
the Xervice. This field is used to authenticate a specific user.

Where Used VCI_Login

VCI_Logout

VCI_Submit

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Valid loginID obtained by VCI_Login

Description This field is used to authorize connection to VALUES. The password is
specified by the end user application and passed to VALUES. The
characters that can be entered into this field are all characters allowed for
system passwords of the platform that the MISS is running on.

Where Used VCI_Connect

Characteristics Type Value/Reference Format

char [] (see above
for special
characters)

Value MAX_PWDID

Valid Values A valid password registered on the MISS.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 117
6.2.26 prodMode (CnctRespDataT)

6.2.27 reqID (ReqCntrlT)

Description This field specifies the production mode of Exchange applications:
production, simulation, or development. This field is returned to the end
user application through the response of VCI_Connect.

Where Used VCI_Connect

Characteristics Type Value/Reference Format

char Value 1

Valid Values VCI_AREA_PROD

VCI_AREA_SIM

VCI_AREA_DEV

Description This field specifies the application request to be submitted through
VCI_Submit within a context of an Exchange Service. Each application
request is assigned a unique request ID. The end user application specifies
the request ID.

Where Used VCI_Submit

In application callbacks

Characteristics Type Value/Reference Format

int Value p/d

Valid Values For a complete list of available request Ids, please refer to the Exchange
application specific volumes.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 118
6.2.28 resubmitFlag (ReqCntrlT)

6.2.29 resubmitNo (ReqCntrlT)

Description This flag is used to indicate whether a resubmitted application request was
processed or not. If processing did occur, then this field is set to
RESUBMISSION_PROCESSED and data is available in the application
response. If processing did not occur - either because of an error or
because processing was finished in response to a different instance of the
associated request, then this field is set to
RESUBMISSION_NOT_PROCESSED and no data is available in the appli-
cation response.

Where Used In application callbacks. Refer to Exchange Application Software specific
Volume.

Characteristics Type Value/Reference Format

int Value p/d

Valid Values RESUBMISSION_PROCESSED
RESUBMISSION_NOT_PROCESSED

Description This field uniquely identifies the corresponding resubmitted application
request.

Where Used VCI_Submit

In application callbacks. Refer to Exchange Application Software specific
Volume.

Characteristics Type Value/Reference Format

unsigned int Value p/d

Valid Values Numeric

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 119
6.2.30 streamType (CallbkAppDataT, SubsReqDataT)

6.2.31 subject (CallBkAppDataT)

6.2.32 subject (SubsRegDataT)

Description This field specifies the broadcast data stream that the application wants to
subscribe to. Each data stream defines its own streamType which is unique
within the context of an Exchange application. This field is populated by the
end user application and passed to VALUES.

Where Used VCI_Subscribe

In application callbacks

Characteristics Type Value/Reference Format

int Value p/d

Valid Values For valid stream types please refer to the data definition files published with
the VALUES API software. See section 7 for information on data definition
files. Also, please refer to the Exchange application specific volumes for
further information on subscriptions and broadcast stream types.

Description This field is reserved for future use.

Where Used n/a

Characteristics Type Value/Reference Format

BcastSubjectT* n/a n/a

Valid Values Not Relevant

Description This field defines the subject data structure. The subject data structure is
populated by the end user application and passed to VALUES as a byte
block. Subject structures are defined with each subscription application
request in the Exchange application specific volumes.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 120
6.2.33 subjectLength (SubsReqDataT)

6.2.34 subsID (CallBkAppDataT, SubsRespDataT)

Where Used VCI_Subscribe

Characteristics Type Value/Reference Format

void* Reference p/d

Valid Values For definition of subject structures please refer to the Exchange application
specific volumes. Subject structures are defined in the description of each
subscription application request.

Description This field defines the byte length of the broadcast subject. This field is filled
by the end user application and passed to VALUES.

Where Used VCI_Subscribe

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Use actual size of subject data structure.

Description This field uniquely identifies a subscription. The field is populated by
VALUES in the response of a successful subscription request. The end user
application specifies the subsID to unsubscribe from a specific data
stream.

Where Used VCI_Unsubscribe

 In application callbacks

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Valid subsID obtained by VCI_Subscribe

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 121
6.2.35 subsSubject (SubsRegDataT)

6.2.36 techComplCode (StatusDataT)

6.2.37 techComplSeverity (StatusDataT)

Description This field is reserved for future use.

Where Used n/a

Characteristics Type Value/Reference Format

BcastSubjectT* n/a n/a

Valid Values Not Relevant

Description This field contains a code that describes the completion status of either the
Call Interface call or GATE. This field is filled by VALUES on return from a
call to the interface.

Where Used All Call Interface entry points

Characteristics Type Value/Reference Format

int Value p/d

Valid Values Value varies according to Call Interface entry point. Please refer to section
5 for a list of completion codes.

Description This field defines the severity of the completion code (techComplCode).
Value varies according to the circumstances in which the processing
occurred; e.g., successful completion of processing results in
VCI_SUCCESS severity.

Where Used All Call Interface entry points

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 122
6.2.38 techComplText (StatusDataT)

6.2.39 userID (CnctReqDataT)

Characteristics Type Value/Reference Format

int Value p/d

Valid Values VCI_SUCCESS

VCI_WARNING

VCI_ERROR

VCI_FATAL

Description This field is the decode of a specific completion code. This is a textual
description of the completion code.

Where Used All Call Interface entry points

Characteristics Type Value/Reference Format

char [] Value ELB_MAX_STRING

Valid Values Value varies according to Call Interface entry point. Please refer to section
5 for a list of completion codes and decodes.

Description This field contains the user identification to authenticate access to VALUES.
The field is populated by the end user application and passed to VALUES.

Where Used VCI_Connect

Characteristics Type Value/Reference Format

char[] Value MAX_USRID

Valid Values A valid user ID known on the MISS.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 123
6.2.40 userID (LoginReqDataT)

6.2.41 userID (SubsReqDataT)

6.2.42 VCIver (ReqCntrlT)

Description This field contains the user identification to authenticate access to an
Exchange Service. The field is populated by the end user application and
passed to VALUES.

Where Used VCI_Login

Characteristics Type Value/Reference Format

char [] Value LOGIN_MAX_ USRID

Valid Values A valid user ID known to the Exchange Service.

Description This field contains the user identification to authenticate access to
broadcast streams of an Exchange application. The field is populated by
the end user application and passed to VALUES.

Where Used VCI_Subscribe

Characteristics Type Value/Reference Format

char[] Value SUBS_MAX_USERID

Valid Values A valid user ID known to the Exchange application (for future use).

Description This field contains the version number (CVN) of the VALUES API Call
Interface. The CVN is used to support Call Interface backwards compati-
bility.

Where Used All Call Interface entry points

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
VALUES API Call Interface Field Descriptions Page 124
6.2.43 VMQname (CnctRespDataT)

Characteristics Type Value/Reference Format

char [] Value MAX_VCIVER

Valid Values CVN_012

Description This field identifies the VALUES message queue. The field is populated by
VALUES through the VCI_Connect entry point. The end user application
uses VMQname to address the VALUES message queue; i.e., to check for
pending events.

Where Used VCI_Connect

Characteristics Type Value/Reference Format

char[] Value MAX_VMQNAM

Valid Values Left-aligned and ’\0’ terminated queue name.

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
Data Definitions Page 125
7 Data Definitions

This section provides a list of the VALUES header files needed to use the VALUES API Call Interface
(technical components). These header files contain the constants, enumeration types and structure
definitions necessary to use the VALUES API Call Interface. Table 7.1 gives the description of each
header file. All header files are provided in electronic format with the Exchange application software.
The header files necessary to use the VALUES API application requests are listed in the Exchange
application specific volumes.

File Description

Values.h Contains Call Interface function prototypes, constant definitions and other
structure definitions needed to use the VALUES API Call Interface.

elbcodetech.h This header file is a collection of all technical exception codes that may be
returned by the VALUES API. Constant definitions are provided for each
exception code. The decodes of the technical exception codes are provided
with the file msg.dat which is included in the VALUES API software distri-
bution.

subject.h Contains constant definitions for subscriptions (e.g., subject wildcard,
GAPINFO special subject).

exid.h Contains definitions of preprocessor constants for Xervice Classes. The
preprocessor constants for individual Xervices, which have become obsolete
with the introduction of the Xervice Class concept, will be removed from this
file in a later release. They should not be used any longer.

Table 7.1 - VALUES API Header Files

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
Glossary Page 126
8 Glossary

Term Explanation

API Application Programming Interface.

Application callback End user application functions invoked by VALUES on receipt of an
application response or other events. The end user application
defines which callback is to be invoked by “registering” the callback.

Application dispatch loop The application dispatch loop is implemented in the end user appli-
cation (usually the main processing loop). It receives notification of
an event on the VMQ when Exchange applications write VALUES
events such as response events, subscription events, notifications
and exception events to the VMQ. Upon event notification from the
VMQ, the application dispatch loop will trigger VCI_Dispatch to
retrieve the event from the VMQ.

Application request Application requests are functional entry points to Exchange appli-
cation services. Application requests are always used in conjunction
with the VALUES API Call Interface to provide the functional infor-
mation required to access Exchange application services.

Application response Application responses are received by the end user application as a
dedicated single response to a specific request. The application
response contains the results of Exchange Service request
processing and is delivered asynchronously to the end user appli-
cation.

Asynchronous processing An asynchronous entry point does not block until its processing is
completed. Asynchronous entry points return to the end user appli-
cation immediately with a status of the processing request.
Processing responses are received at a later point in time (i.e.,
asynchronous to the processing request).

AVN Application Version Number. Each application request, subscription
request, application response and broadcast contains an application
version number which defines the version of the associated
Exchange application.

Back End General term for any system based at Deutsche Börse providing
centralized services to members having access to it, e.g. Xetra®.

BESS Back End related Subsystem. The exchange specific subsystem of
the MISS.

Broadcast A broadcast is information disseminated to the members by an
Exchange application (e.g., Trade Confirmation, Order Confirmation).
Broadcasts are sent across different data streams, each data
stream contains a specific type of information.

Table 8.1 - Glossary

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
Glossary Page 127
Broadcast gap stream Broadcast gaps can occur on different types of broadcast streams.
The broadcast gap stream can be used to detect missing broad-
casts and to inform applications of the potential loss of a broadcast.
Using the Gap Info subject (refer to section 2.7 for details) should be
preferred wherever possible.

Call Interface The Call Interface contains the technical entry points to Exchange
application services. The Call Interface is a set of system subrou-
tines called by an application to access Exchange application
services.

Completion code The VALUES API Call Interface communicates status information with
a completion code data field. Each entry point may generate a
number of different completion codes.

CCP Central Counterparty

CVN Call Interface Version Number. Each Call Interface entry point
contains a Call Interface version number.

Data streams Data streams are the vehicle used to disseminate information of a
specific type to members. Each type of information defines its own
data stream.

DBAG Deutsche Börse AG

End user application End user application is any application which receives services via
the VALUES API.

Entry point The VALUES API Call Interface consists of a fixed number of
technical entry points, which are used to establish a session,
transmit application requests, request data and receive responses.

Eurex European Exchange. Electronic trading and clearing system for the
derivatives market (options and futures).

Eurex US Eurex’s US Exchange

Exception event An event sent to the VALUES API in case of exceptions with the
connection (e.g., network exceptions, Exchange application
exception, etc.).

Exchange application Application provided by an Exchange that provides one or more
services to an end user application.

Exchange Service See Exchange application.

Field usage Field usage specifies field information such as whether a field is
mandatory, optional or occurs multiple times. Field usages are
specified in application request descriptions.

Front End Any member’s local system providing access to an Exchange appli-
cation.

Term Explanation

Table 8.1 - Glossary

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
Glossary Page 128
GATE GATE (Generic Access to Exchanges) are processes running on
members’ workstation and MISS to provide the technical infra-
structure for VALUES and to communicate with the Exchange appli-
cation.

MAA Member Assembled Application. It is a third party developed end
user application which runs on VALUES API.

Member Market participant.

Member applications See MAA.

MISS Member Integration System Server

Paging The paging mechanism in the VALUES API allows handling of large
response data sets while limiting the size of messages transferred.

Request ID The request ID is used to identify a specific application request to
Exchange Services.

Request Management Service Provides access to Exchange Service. A request consists of a single
application request and a single application response. Used to
trigger processing by an Exchange Service.

Response event Answers to end user application requests sent to Exchange
Services.

Session A VALUES session is a control technique for managing communica-
tions between an end user application and VALUES using GATE. The
communication between an end user application and an Exchange
application is based on a session. Only one VALUES session can be
established per application process.

Subscription Mechanism used to request event-driven broadcast information from
Exchange applications. Subscriptions can be started and stopped.
Broadcast information requested through subscription arrives
asynchronously.
Subscription requests are sent to Exchange applications specifying
the desired data stream. Subsequently all new broadcast data on the
specified stream is sent to the end user application asynchronously.

Synchronous processing Synchronous Call Interface entry points block until VALUES internal
processing completes; i.e., associated processing request
completes with receipt of a processing response.

Technical Services see “GATE”.

User A user for the interface specification is defined as any member,
trader, or participant who receives Exchange services via the
VALUES API.

Term Explanation

Table 8.1 - Glossary

GATE Release 3.5
VALUES API Member Front End Development Guide Version 3.0
Volume 1 - Call Interface

27.07.2006
Glossary Page 129
User interface Event Queue Event queue of any event drives end user application. For example, a
GUI application uses an event queue to handle mouse or keyboard
input events.

VALUES Virtual Access Link Using Exchange Services

VALUES API The VALUES API is a set of system subroutines and data structures
used to communicate with Exchange Services.

VALUES events A VALUES event is an indication of application responses, broadcast
information, notifications or exceptions received by the VALUES
Message Queue (VMQ).

VCI VALUES Call Interface. See “Call Interface”.

VMQ VALUES Message Queue. It temporarily stores communication
channel, application requests, responses and broadcasts which are
transmitted between VALUES and GATE.

WS Workstation.

Xervice A Xervice is a service offered to a VALUES-based Front End appli-
cation by a certain electronic exchange. A single exchange can offer
multiple Xervices. See section 2.9 for details.

Xervice Class A Xervice Class is an identifier that is equal across Xervices which
offer identical VALUES functionality, given the Application Version
Number is also equal. See section 2.9 for details.

Xetra® Exchange Electronic Trading. Deutsche Börse’s electronic trading
system for cash markets.

Xontro BrainTrade’s Floor Trading System

Term Explanation

Table 8.1 - Glossary

	Table of Contents
	1 Introduction
	1.1 VALUES API
	Figure 1.1 - The VALUES API in the Context of Exchange Infrastructure

	2 VALUES API Call Interface Concepts
	2.1 Overview
	Figure 2.1 - The VALUES API Framework - Call Interface Entry Points
	Table 2.1 - VALUES API Entry Points
	Figure 2.2 - VALUES API Usage Hierarchy
	Figure 2.3 - VALUES API Information and Processing Flow Model

	2.2 Session Management Services
	2.2.1 Overview
	Figure 2.4 - VALUES Session Concept

	2.2.2 Initiating a VALUES Session
	Figure 2.5 - Connecting to GATE
	Table 2.2 - VCI_Connect Process Flow

	2.2.3 Terminating a VALUES Session Normally
	Figure 2.6 - Disconnecting from Technical Services GATE
	Table 2.3 - VCI_Disconnect Process Flow

	2.2.4 Terminating a VALUES Session Abnormally

	2.3 Security Management Services
	2.3.1 Overview
	Table 2.4 - VALUES API Security Mechanisms

	2.3.2 Logging Into an Exchange Application
	Figure 2.7 - Exchange Application Login
	Table 2.5 - VCI_Login Process Flow

	2.3.3 Receiving a Login Response
	Figure 2.8 - Login Response Processing
	Table 2.6 - VCI_Dispatch Process Flow (Receipt of Login Response)

	2.3.4 Logging Out from an Exchange Application Normally
	Figure 2.9 - Exchange Application Logout
	Table 2.7 - VCI_Logout Process Flow

	2.3.5 Receiving a Logout Response
	Figure 2.10 - Logout Response Processing
	Table 2.8 - VCI_Dispatch Process Flow (Receipt of Logout Response)

	2.3.6 Logging Out from an Exchange Application Abnormally

	2.4 Request Management Services
	2.4.1 Overview
	2.4.2 Submitting an Application Request
	Figure 2.11 - Application Request Processing
	Table 2.9 - VCI_Submit Process Flow

	2.4.3 Receiving an Application Response
	Figure 2.12 - Application Response Processing
	Table 2.10 - VCI_Dispatch Process Flow (Receipt of Application Response)

	2.5 Subscription Management Services
	2.5.1 Overview
	Figure 2.13 - Subscription Concept

	2.5.2 Broadcast Extension
	2.5.3 Identifying Available Data Streams
	2.5.4 Subscribing to a Data Stream
	Figure 2.14 - Data Stream Subscription
	Table 2.11 - VCI_Subscribe Process Flow

	2.5.5 Receiving Subscription Responses
	Figure 2.15 - Subscription Response Processing
	Table 2.12 - VCI_Dispatch Process Flow (Receipt of Subscription Response)

	2.5.6 Receiving Subscription Data
	Figure 2.16 - Subscription Data Receipt
	Table 2.13 - VCI_Dispatch Process Flow (Receipt of Subscription Data)

	2.5.7 Unsubscribing from a Data Stream Normally
	Figure 2.17 - Data Stream Unsubscription
	Table 2.14 - VCI_Unsubscribe Process Flow

	2.5.8 Receiving Unsubscription Responses
	Figure 2.18 - Unsubscription Response Processing
	Table 2.15 - VCI_Dispatch Process Flow (Receipt of Unsubscription Responses)

	2.5.9 Unsubscribing from a Data Stream Abnormally

	2.6 Integrating VALUES Events
	Figure 2.19 - VALUES Message Delivery to End User Application
	Table 2.16 - VCI_Connect and VCI_Dispatch Process Flow (VALUES Message Delivery)

	2.7 Recovery Management Services
	2.8 Multi-User Capability
	Figure 2.20 - Multi-User Login

	2.9 Xervices, Xervice Classes and Multi-Exchange Capability
	2.10 VALUES API Backwards Compatibility Concepts

	3 VALUES API Call Interface Reference
	3.1 Overview
	Table 3.1 - The Call Interface Status Data Structure
	Table 3.2 - Call Interface Exception Severity Classes

	3.2 State Diagrams
	3.2.1 Overview
	3.2.2 Normal Operation
	Session Management Services
	Figure 3.1 - State Diagram for Session Management Services

	Security Management Services
	Figure 3.2 - State Diagram for Security Management Services

	Request Management Services
	Figure 3.3 - State Diagram for Request Management Services

	Subscription Management Services (Broadcast Extension assumed)
	Figure 3.4 - State Diagram for Subscription Management Services

	3.2.3 Exception Handling
	Notification Mechanism:
	1. Login callback - for each active login techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_XERVICE_NOT_AVAILABLE
	2. Submit callback - for each pending request (including login, logout, subscribe and unsubscribe) techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_PENDING_REQUEST_DELETED
	3. Subscribe callback - for each active subscription techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_SUBSCRIPTION_DELETED
	4. Connection callback depending on disconnection response completion code either techComplSeverity: VCI_SUCCESS techComplCode: ELB_TECH_OK or techComplSeverity: VCI_ERROR techComplCode: ELB_TECH_REQ_UNSUCCESSFUL

	Notification Mechanism:
	1. Login callback - for the specific login techComplSeverity: VCI_SUCCESS techComplCode: ELB_TECH_LOGGED_OUT
	2. Submit callback - for each pending request of the specific login techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_ PENDING_REQUEST_DELETED
	3. Subscribe callback - for each pending subscription request of the specific login, if Broadcast Extension is implemented by the Xervice (see section 2.5.2).
	4. techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_ PENDING_REQUEST_DELETED
	5. Subscribe callback - for each active subscription of the specific login
	6. techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_SUBSCRIPTION _DELETED
	7. Connection callback techComplSeverity: VCI_SUCCESS techComplCode: ELB_TECH_LOGGED_OUT

	Notification Mechanism:
	Notification Mechanism:
	Notification Mechanism:
	1. Login callback - for each active login of the specific Exchange Service techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_XERVICE_NOT_AVAILABLE
	2. Submit, Login, Subscribe(Broadcast Extension only) callback - per pending request of the specific Exchange Service (including...
	3. Subscription callback - per active subscription of the specific Exchange.
	4. techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_ SUBSCRIPTION_DELETED
	5. Connection callback techComplSeverity: VCI_SUCCESS techComplCode: ELB_TECH_XERVICE_NOT_AVAILABLE

	Notification Mechanism:
	1. Login callback - for each active login techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_XERVICE_NOT_AVAILABLE
	2. Submit callback - for each pending request (including login, logout, subscribe and unsubscribe) techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_ PENDING_REQUEST_DELETED
	3. Subscribe callback - for each active subscription techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_SUBSCRIPTION_DELETED
	4. Connection callback techComplSeverity: VCI_FATAL techComplCode: ELB_TECH_TECHSRCV_NOT_AVAILABLE

	Notification Mechanism:
	1. Login callback - for each active login of the specific Exchange Service techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_NONTRANSPARENT_FAILOVER
	2. Submit/Login/Subscribe callback - per pending request of the specific Exchange Service request (including submit, login, logout, subscribe and unsubscribe) techComplSeverity: VCI_WARNING techComplCode: ELB_TECH_ PENDING_REQUEST_DELETED
	3. Connection callback techComplSeverity: VCI_SUCCESS techComplCode: ELB_TECH_NONTRANSPARENT_FAILOVER

	3.3 VCI_Connect
	3.3.1 Overview
	Syntax void VCI_Connect (
	ReqCntrlT *reqControl,
	CnctReqDataT *reqData,
	AppCallbackT *callbackFunc,
	AppCntxtDataT *callbackCntxtData,
	CnctRespDataT *respData,
	StatusDataT *statusDataGlobal
);

	3.3.2 VALUES Call Interface Version
	3.3.3 The Connect Application Callback

	3.4 VCI_Disconnect
	Syntax void VCI_Disconnect(
	ReqCntrlT *reqControl,
	DiscnctReqDataT *reqData,
	StatusDataT *statusDataGlobal
);

	3.5 VCI_Dispatch
	Syntax void VCI_Dispatch(
	ReqCntrlT *reqControl,
	StatusDataT *statusDataGlobal
);

	3.6 VCI_Login
	Syntax void VCI_Login(
	ReqCntrlT *reqControl,
	LoginReqDataT *reqData,
	AppCallbackT *callbackFunc,
	AppCntxtDataT *callbackCntxtData,
	LoginRespDataT *respData,
	StatusDataT *statusDataGlobal
);
	3.6.1 The Login Application Callback

	3.7 VCI_Logout
	Syntax void VCI_Logout(
	ReqCntrlT *reqControl,
	LogoutReqDataT *reqData,
	LogoutRespDataT *respData,
	StatusDataT *statusDataGlobal
);

	3.8 VCI_Submit
	Syntax void VCI_Submit(
	ReqCntrlT *reqControl,
	SubmitReqDataT *reqData,
	AppCallbackT *callbackFunc,
	AppCntxtDataT *callbackCntxtData,
	StatusDataT *statusDataGlobal
);
	3.8.1 The Submit Application Callback

	3.9 VCI_Subscribe
	Syntax void VCI_Subscribe(
	ReqCntrlT *reqControl,
	SubsReqDataT *reqData,
	AppCallbackT *callbackFunc,
	AppCntxtDataT *callbackCntxtData,
	SubsRespDataT *respData,
	StatusDataT *statusDataGlobal);
	3.9.1 The Subscription Application Callback

	3.10 VCI_Unsubscribe
	Syntax void VCI_Unsubscribe(
	ReqCntrlT *reqControl,
	UnsubsReqDataT *reqData,
	UnsubsRespDataT *respData,
	StatusDataT *statusDataGlobal
);

	3.11 Application Callback Function Type
	Syntax typedef void (AppCallbackT) (
	ReqCntrlT *reqControl,
	CallBkAppDataT *appData,
	AppCntxtDataT *callbackCntxtData,
	StatusDataT *statusDataGlobal
);
	Table 3.3 - Connection Callback
	Table 3.4 - Login Callback
	Table 3.5 - Login Callback (Logout)
	Table 3.6 - Subscription Callback
	Table 3.7 - Submit Callback

	4 VALUES API Usage Examples
	4.1 Overview
	4.2 Initiating a VALUES Connection
	4.3 Application Dispatch upon Event Notification
	4.4 Receiving Connection Events
	4.5 Logging on to Exchange Services
	4.6 Receiving Login Responses
	4.7 Submitting Application Requests
	4.8 Receiving Application Responses
	4.9 Subscribing to a Data Stream
	4.10 Receiving Subscription Data
	4.11 Unsubscribing from a Data Stream
	4.12 Logging off from an Exchange Service
	4.13 Terminating a VALUES Session
	4.14 Auxiliary Functions of an End User Application

	5 VALUES API Completion Codes (Call Interface)
	Table 5.1 - VALUES API Completion Codes

	6 VALUES API Call Interface Field Descriptions
	6.1 Overview
	6.1.1 Field Characteristics
	Table 6.1 - VALUES API Data Types

	6.1.2 Initialization Guideline
	Table 6.2 - Data Field Initialization Guideline

	6.1.3 Template for the Call Interface Field Descriptions

	6.2 Call Interface Field Descriptions
	6.2.1 appDescr (ReqCntrlT)
	6.2.2 applClass (XerviceInfoT)
	6.2.3 applPrevVersion (CallBkAppDataT)
	6.2.4 applVersion (LoginReqDataT, SubsReqDataT, CallBkAppDataT, XerviceInfoT)
	6.2.5 appReq (SubmitReqDataT)
	6.2.6 appReqBlockSize (CallBkAppDataT, SubmitReqDataT)
	6.2.7 appReqData (CallBkAppDataT)
	6.2.8 appRespBlockSize (CallBkAppDataT)
	6.2.9 appRespData (CallBkAppDataT)
	6.2.10 authorizationData (LoginReqDataT, SubsReqDataT)
	6.2.11 authorizationDataLength (LoginReqDataT, SubsReqDataT)
	6.2.12 brcSubject (CallBkAppDataT)
	6.2.13 closure (LoginReqDataT)
	6.2.14 complCode (statusDataT)
	6.2.15 complSeverity (statusDataT)
	6.2.16 complText (statusDataT)
	6.2.17 connectionID (ReqCntrlT, CnctRespDataT)
	6.2.18 custBlockSize (AppCntxtDataT)
	6.2.19 custData (AppCntxtDataT)
	6.2.20 dbApplID (ReqCntrlT)
	6.2.21 exchApplId (XerviceInfoT)
	6.2.22 exchDscrName (XerviceInfoT)
	6.2.23 funcResult (LoginRespDataT)
	6.2.24 loginID (ReqCntrlT, LoginRespDataT)
	6.2.25 password (CnctReqDataT)
	6.2.26 prodMode (CnctRespDataT)
	6.2.27 reqID (ReqCntrlT)
	6.2.28 resubmitFlag (ReqCntrlT)
	6.2.29 resubmitNo (ReqCntrlT)
	6.2.30 streamType (CallbkAppDataT, SubsReqDataT)
	6.2.31 subject (CallBkAppDataT)
	6.2.32 subject (SubsRegDataT)
	6.2.33 subjectLength (SubsReqDataT)
	6.2.34 subsID (CallBkAppDataT, SubsRespDataT)
	6.2.35 subsSubject (SubsRegDataT)
	6.2.36 techComplCode (StatusDataT)
	6.2.37 techComplSeverity (StatusDataT)
	6.2.38 techComplText (StatusDataT)
	6.2.39 userID (CnctReqDataT)
	6.2.40 userID (LoginReqDataT)
	6.2.41 userID (SubsReqDataT)
	6.2.42 VCIver (ReqCntrlT)
	6.2.43 VMQname (CnctRespDataT)

	7 Data Definitions
	Table 7.1 - VALUES API Header Files

	8 Glossary
	Table 8.1 - Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

